ECE 341-Homework \#1

Tree Diagrams and Enumeration.

1) Two teams, A and B, are playing a best of 5 game series.

- The series is over once one team wins 3 games.
- B starts with +1 point (odds)

Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling a 4 -sided die (d4) and a 6 -sided die (d6) (enumaration).

$\begin{gathered} (\mathrm{d} 4, \mathrm{~d} 6) \\ \min (\mathrm{d} 4, \mathrm{~d} 6) \end{gathered}$		6 -sided die					
		1	2	3	4	5	6
4-sided die	1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
		1	1	1	1	1	1
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
		1	2	2	2	2	2
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
		1	2	3	3	3	3
	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
		1	2	3	4	4	4

Also determine the probability $\mathrm{X}\{1 . .6\}$ where X is the smallest of the two numbers.
$X=1: 9$ chances out of 24 outcomes $(p=9 / 24)$
$X=2$: 7 chances out of 24 outcomes $(p=7 / 24)$
$X=3: 5$ chances out of 24 outcomes $(p=5 / 24)$
$X=4: 3$ chances out of 24 outcomes $(p=3 / 24)$
$X=5: 0$ chances out of 24 outcomes $(p=0 / 24)$
$X=6$: 0 chances out of 24 outcomes $(p=0 / 24)$

Two players, A and B, are playing a game of dice.

- Player A rolls a d4 and a d6 and takes the smallest of the two numbers (i.e. problem \#2)
- Player B rolls a 6 -sided die and subtracts one (d6-1).

Player A wins on ties.
3) What is the conditional probability

- Player A wins given B's score is 3 (B rolled a 4)

The probability that A wins given that B scores 3 points is

$$
\begin{aligned}
\mathrm{p}(\mathrm{~A} \text { wins }) & =\mathrm{p}(\mathrm{~A} \text { scores } 3 \text { points })+\mathrm{p}(\mathrm{~A} \text { scores } 4 \text { points }) \\
= & (5 / 24)+(3 / 24) \\
= & 8 / 24
\end{aligned}
$$

Player A has a $8 / 24$ chance of winning knowing that B scored 3 points
4) What is the probability that player A will win any given game?

$$
\begin{array}{r}
\mathrm{p}(\mathrm{~A} \text { wins })=\mathrm{p}(\mathrm{~A} \text { wins } \mid B \text { scores } 0 \text { points }) * \mathrm{p}(\mathrm{~B} \text { scores } 0 \text { points })+ \\
\mathrm{p}(\mathrm{~A} \text { wins } \mid B \text { scores } 1 \text { point }) * \mathrm{p}(B \text { scores } 1 \text { point })+ \\
\mathrm{p}(\mathrm{~A} \text { wins } \mid B \text { scores } 2 \text { points }) * p(B \text { scores } 2 \text { points })+ \\
\\
\mathrm{p}(\mathrm{~A} \text { wins } \mid B \text { scores } 3 \text { points }) * p(B \text { scores } 3 \text { points })+ \\
\mathrm{p}(A \text { wins } \mid B \text { scores } 4 \text { points }) * p(B \text { scores } 4 \text { points })+ \\
\\
\mathrm{p}(A \text { wins } \mid B \text { scores } 5 \text { points }) * p(B \text { scores } 5 \text { points })
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 0 \text { points }) & =1.000 \\
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 1 \text { points }) & =1.000 \\
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 2 \text { points }) & =\mathrm{p}(\mathrm{~A}=2)+\mathrm{p}(\mathrm{~A}=3)+\mathrm{p}(\mathrm{~A}=4) \\
& =(7 / 24)+(5 / 24)+(3 / 24)=15 / 24 \\
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 3 \text { points }) & =\mathrm{p}(\mathrm{~A}=3)+\mathrm{p}(\mathrm{~A}=4) \\
& =(5 / 24)+(3 / 24)=8 / 24 \\
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 4 \text { points }) & =\mathrm{p}(\mathrm{~A}=4) \\
& =(3 / 24) \\
\mathrm{p}(\mathrm{~A} \text { wins | B scores } 5 \text { points }) & =0
\end{array}
$$

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~A} \text { wins })=(1.00)(1 / 6)+(1.00)(1 / 6)+(15 / 24)(1 / 6)+(8 / 24)(1 / 6)+(3 / 24)(1 / 6)+(0)(1 / 6)+(0)(1 / 6) \\
& \mathrm{p}(\mathrm{~A} \text { wins })=0.513889
\end{aligned}
$$

A has a $\mathbf{5 1 . 3 8 8 8 9 \%}$ chance of winning any given game

Enumeration \& Farkle

Write a Matlab program to go through every combination of 6d6 and determine...
5) The odds of rolling 5-of-a-kind

$$
\text { dice }=\operatorname{xxxxxa} \quad \text { a not equal to } x
$$

6) The odds of rolling two tripples
```
    dice = xxx yyy }x\mathrm{ x and y different
    five of a kind two tripples
p = 0.003858024691358 0.006430041152263
Elapsed time is 2.485368 seconds
```

Code:

```
\% Lecture \#1: Enumeration
\% Roll six dice
\% Count how many times you get 4 of a kind
\% xxxx a b
tic
Pair5 = 0;
Pair33 = 0;
for \(d 1=1: 6\)
    for \(d 2=1: 6\)
            for d3 = 1:6
                for \(d 4=1: 6\)
                for d5 = 1:6
                    for d6 = 1:6
                            Dice \(=[d 1, d 2, d 3, d 4, d 5, d 6]\);
                            \% check for pairs
                            \(\mathrm{N}=\) zeros \((1,6)\);
                            for \(i=1: 6\)
                                    \(\mathrm{N}=\operatorname{sum}(\) Dice \(==\) i);
                                    end
                                [N,b] = sort(N, 'descend');
                if ( \(N(1)==5)\)
                                    Pair5 = Pair5 + 1;
                                    end
                                    if( ( \(\mathrm{N}(1)==3) *(\mathrm{~N}(2)==3)\) )
                                    Pair33 = Pair33 + 1;
                                    end
                            end
                        end
                end
            end
        end
end
\% probability:
disp('Odds')
disp([ Pair5, Pair33] / (6^6) )
toc
```


Enumeration in 4-card Poker

7) In 4-card poker, you're dealt just 4 cards. Determine using enumeration the odds of being dealt 2-pair
hand = xx yy
8) Determine using enumeration the odds of being dealt one-pair
```
        hand = xx y z
                2-pair pair
                2808 82368
    p = 0.010372148859544 0.304249699879952
Elapsed time is 30.628046 seconds.
```

Code
\% 4-Card Stud
tic
Pair22 = 0;
Pair2 = 0;
for c1=1:52
for $c 2=c 1+1: 52$
clc
disp([c1, c2])
for c3 = c2+1:52
for $c 4=c 3+1: 52$
Hand $=[c 1, c 2, c 3, c 4]$;
Value $=\bmod (H a n d, 13)+1 ;$
$\mathrm{N}=\operatorname{zeros}(1,13)$;
for $\mathrm{n}=1: 13$
$\mathrm{N}(\mathrm{n})=\operatorname{sum}($ Value $==\mathrm{n})$;
end
$[\mathrm{N}, \mathrm{a}]=\operatorname{sort}\left(\mathrm{N}, \mathrm{Cdescend}{ }^{\prime}\right)$;
if $((N(1)==2) *(N(2)==2))$ Pair22 = Pair22 + 1; end
if ((N(1) == 2)*(N(2) == 1)) Pair2 = Pair2 + 1; end
end
end
end
end
disp([Pair22, Pair2]/270725)
toc

