ECE 341 - Homework \#2

Card Games \& z-Transforms

The card game bridge uses a 52-card deck. Each person is dealt 13 cards for their hand.

1) How many different hands are possible? (order doesn't matter)

$$
N=\binom{52}{13}=\left(\frac{52!}{13!\cdot(52-13)!}\right)=635,013,559,600
$$

2) What is the probability of having 9 cards of one suit in your hand?

The number of hands with 9 cards of one suit are

$$
M=(4 \text { suits, choose } 1)(13 \text { cards in that suit, choose } 9)(39 \text { remaining cards choose } 4)
$$

$$
M=\binom{4}{1}\binom{13}{9}\binom{39}{4}=235,237,860
$$

the probability is

$$
p=\left(\frac{M}{N}\right)=\left(\frac{\binom{4}{1}\binom{13}{9}\binom{39}{4}}{\binom{52}{13}}\right)=0.000370
$$

or $2699.45: 1$ odds against
3) What is the probability of having no points (no Jacks, Queens, Kings, or Aces)?

16 cards have points, 36 do not
$M=(36$ cards with no points, choose 13$)(16$ cards with points, choose 0$)$

$$
\begin{aligned}
& M=\binom{36}{13}\binom{16}{0}=2,310,789,600 \\
& p=\left(\frac{M}{N}\right)=\left(\frac{\binom{36}{13}\binom{16}{0}}{\binom{52}{13}}\right)=0.003639
\end{aligned}
$$

or $274.81: 1$ odds againse

In 4-card poker, you're dealt just 4 cards

4) Compute the odds of 2-pair in 4-card poker
hand = xx yy
\# hands $=(52$ choose 4$)$

$$
N=\binom{52}{4}=270,725
$$

\# hands that are 2 pair are
$M=(13$ values choose 2$)(4$ cards of 1 st value, choose 2$)(4$ cards of 2 nd value choose 2$)$

$$
\begin{aligned}
& M=\binom{13}{2}\binom{4}{2}\binom{4}{2}=2808 \\
& \quad p=\left(\frac{M}{N}\right)=\left(\frac{\binom{13}{2}\binom{4}{2}\binom{4}{2}}{\binom{52}{4}}\right)=0.010372
\end{aligned}
$$

From enumeration (homework \#1), M = 2808
5) Compute the odds being dealt one-pair

$$
\text { hand }=\mathrm{xx} \mathrm{y} \mathrm{z}
$$

$M=(13$ values choose 1$)(4$ cards choose 2$)(12$ remaining values choose 2$)(4$ values choose 1$)(4 \mathrm{c} 1)$

$$
\begin{aligned}
& M=\binom{13}{1}\binom{4}{2}\binom{12}{2}\binom{4}{1}\binom{4}{1}=82,368 \\
& p=\left(\frac{\binom{13}{1}\binom{4}{2}\binom{48}{1}\binom{44}{1}}{\binom{52}{4}}\right)=0.30425
\end{aligned}
$$

From enumeration (homework \#1), $\mathrm{M}=82,368$
6) Determine the odds of a 2-pair and 1-pair using Matlab and a Monte-Carlo simulation and 1 million hands of 4-card poker

Code:

```
% ECE 341 Homework #2
% 4-Card Stud
tic
Pair22 = 0;
Pair2 = 0;
for i0 = 1:1e5
    x = rand (1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:4);
    Value = mod(Hand,13) + 1;
    Suit = ceil(Hand/13);
    N = zeros(1,13);
    for n=1:13
        N(n) = sum(Value == n);
    end
    [N,a] = sort(N, 'descend');
    if ( (N(1)==2)*(N(2)==2) ) Pair22 = Pair22 + 1; end
    if ( (N(1)==2)*(N(2)==1) ) Pair2 = Pair2 + 1; end
end
disp([Pair22, Pair2]/1e5)
toc
```

Result

```
2-pair pair
0.01092 0.30437
Elapsed time is 10.824297 seconds.
```


Conditional Probability in 4-Card Poker

7) Compute the probability of getting 4 -of-a-kind if there is a single draw step

- If you are dealt 4 -of-a-kind, draw no cards
- If you are dealt 3 -of-a-kind, draw one card
- If you are dealt 2-pair or 2-of-a-kind, draw 2 cards
- If you are dealt no pairs, draw 3 cards.

4-of a kind

$$
M=\binom{13}{1}\binom{4}{1}=13
$$

p (getting 4-of-a-kind) from here

$$
\mathrm{p}=1
$$

p (3 of a kind)

$$
M=\binom{13}{1}\binom{4}{3}\binom{48}{1}=2496
$$

p (getting 4-of-a-kind) from here is

$$
p=\frac{1}{47}
$$

p (2 of a kind)

$$
M=\binom{13}{1}\binom{4}{2}\binom{48}{2}=87,984
$$

p (getting 4-of-a-kind from here) is

$$
p=\left(\frac{\binom{2}{2}}{\binom{47}{2}}\right)=0.000925
$$

p (high card)

$$
M=\binom{13}{4}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}=183,040
$$

p (drawing 4 of a kind when keeping one card)

$$
p=\left(\frac{\binom{3}{3}}{\binom{47}{3}}\right)=0.000062
$$

hand $=$ xxxy \quad discard y, draw 1
hand = xxyz discard yz, draw 2
hand $=$ xyzt \quad discard yzt, draw 3

The total odds are then

$$
\begin{aligned}
& \quad p=p(4 \mid 4) \cdot p(4)+p(4 \mid 3) \cdot p(3)+p(4 \mid 2) \cdot p(2)+p(4 \mid 1) \cdot p(1) \\
& \quad p=1 \cdot\left(\frac{4}{\binom{52}{4}}\right)+\left(\frac{1}{47}\right)\left(\frac{2496}{\binom{52}{4}}\right)+\left(\frac{\binom{2}{2}}{\binom{47}{2}}\right)\left(\frac{87984}{\binom{52}{4}}\right)+\left(\frac{\binom{3}{3}}{\binom{47}{3}}\right)\left(\frac{183040}{\binom{52}{4}}\right) \\
& p=0.000015+0.000196+0.000301+0.000042 \\
& p=0.000554
\end{aligned}
$$

8) Check your answers using a Monte Carlo simulation with 1 million hands of 4-card draw poker Result
```
Pair4 = 643 out of 1 million
Elapsed time is 77.263381 seconds
p = 0.000 643 ( Monte-Carlo )
p = 0.000 554 ( computed )
```

Code:

```
% ECE 341 Homework #2
% 4-Card draw looking for 4 of a kind
tic
Pair4 = 0
clc
for i0 = 1:1e6
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:4);
    Value = mod(Hand,13) + 1;
    Suit = ceil(Hand/13);
    N = Suit / 10;
    for i=1:4
        for j=1:4
            if(Value(i) == Value(j))
                N(i) = N(i) + 1;
            end
        end
    end
    [a,b] = sort(N, 'descend');
    Hand = Hand(b);
    Value = Value(b);
    Suit = Suit(b);
    N = N(b);
    N = floor(N);
    % draw cards
    if(N(1) == 4) end
    if(N(1) == 3) Hand(4) = Deck(5); end
    if(N(1) == 2) Hand(3:4) = Deck(5:6); end
    if(N(1) == 1) Hand(2:4) = Deck(5:7); end
    Value = mod(Hand,13) + 1;
    Suit = floor(Hand/13) + 1;
    N = Suit / 10;
    for i=1:4
        for j=1:4
            if(Value(i) == Value(j))
```

```
                                    N(i) = N(i) + 1;
                end
            end
    end
    N = floor(N);
    if ( N(1) == 4 ) Pair4 = Pair4 + 1; end
end
[Pair4]
toc
```

9) A new Tesla Model Y ciosts $\$ 58,990$. If you take out a 36 -month load at 2.34% interest, what is your monthly payment? Solve using z-transforms.

Assuming you make constant payments (p) each month starting at monthe \#1, the load balance next month is

$$
\begin{aligned}
& x(k+1)=\left(1+\frac{0.0234}{12}\right) x(k)+(\$ 58,990) \delta(k)-p \cdot u(k-1) \\
& x(k+1)=(1+a) x(k)+L \delta(k)-P u(k-1)
\end{aligned}
$$

or using z -transforms

$$
z X=(1+a) X+L-P\left(\frac{1}{z-1}\right)
$$

Doing some algebra

$$
\begin{aligned}
& (z-(1+a)) X=L-P\left(\frac{1}{z-1}\right) \\
& X=\left(\frac{1}{z-(1+a)}\right) L-P\left(\frac{1}{(z-1)(z-(1+a))}\right) \\
& X=\left(\frac{1}{z-(1+a)}\right) L-P\left(\frac{-1 / a}{z-1}+\frac{1 / a}{z-(1+a)}\right)
\end{aligned}
$$

Take the inverse z -transform

$$
\begin{aligned}
& z X=\left(\frac{z}{z-(1+a)}\right) L-\left(\frac{P}{a}\right)\left(\frac{z}{z-1}+\frac{z}{z-(1+a)}\right) \\
& z x(k)=\left((1+a)^{k} L-\frac{P}{a}\left((1+a)^{k}-1\right)\right) u(k) \\
& x(k)=\left((1+a)^{k-1} L-\frac{P}{a}\left((1+a)^{k-1}-1\right)\right) u(k-1)
\end{aligned}
$$

After 36 payments, the balance is zero

$$
x(36)=0=\left((1+a)^{35} L-\frac{P}{a}\left((1+a)^{35}-1\right)\right)
$$

Your monthly payments are thus

$$
P=\left(\frac{a \cdot(1+a)^{35}}{(1+a)^{35}-1}\right) L
$$

Plugging in numbers

$$
\begin{aligned}
& P=\left(\frac{0.00195 \cdot(1.00195)^{35}}{1.00195^{35}-1}\right) \cdot \$ 58,990 \\
& P=\$ 1745.24
\end{aligned}
$$

Your monthly payments to own a Tesla Model Y would be $\$ 1745.24$

- $\$ 1834.47$ / month at 5.74% interest (car loan interest rate as of May 20, 2022)

