ECE 341 - Homework \#3

Dice Games and z-Transform

Yahtzee (5 dice)

In the game of Yahtzee, you roll five dice.

- You can then keep whichever dice you like and re-roll the rest.
- You can then do this a second time.

Whatever the results are after three rolls scores points. A Yahtzee is when you roll 5-of-a-kind.

1) Compute the odds of rolling five-of-a-kind when rolling 5 dice one time

$$
\text { dice }=\operatorname{xxxx}
$$

(6 values choose 1 for x$)(5$ spots for x , choose 5)

$$
\begin{aligned}
& m=\binom{6}{1}\binom{5}{5}=6 \\
& p=\left(\frac{6}{7776}\right)=0.000772
\end{aligned}
$$

or

$$
p=\binom{6}{1}\left(\frac{1}{6}\right)^{5}=0.000772
$$

2) Compute the odds of rolling four-of-a-kind when rolling 5 dice one time

$$
\text { dice }=\operatorname{xxxx} y
$$

(six values choose 1 for x$)(5$ spots for x , choose 4$)(5$ remaining values, choose 1 for y)
$m=\binom{6}{1}\binom{5}{4}\binom{5}{1}=150$
$p=\left(\frac{150}{7776}\right)=0.0193$
3) (Conditional Probability): Compute the odds of getting a Yahtzz (5-of-a-kind) by

- Rolling 4-of-a-kind, then
- Rolling one die and getting a Yahtzee on the next roll, or
- Not getting a Yahtzee on the second roll but getting in on the 3rd roll

A: rolling 5 of a kind

$$
\begin{aligned}
& p(Y \mid A)=1 \\
& p(A)=\left(\frac{6}{7776}\right)
\end{aligned}
$$

B: Rolling 4 of a kind then getting Yahtzee on your next roll
Getting Yahtzee after rolling 4 of a kind

$$
\begin{aligned}
& p(Y \mid B)=\left(\frac{1}{6}\right) \\
& p(B)=\left(\frac{150}{7776}\right)
\end{aligned}
$$

C: Rolling 4 of a kind, not getting Yahtzee on your 2 nd roll, but getting it on your 3rd roll

$$
\begin{aligned}
& p(Y \mid C)=\left(\frac{1}{6}\right) \\
& p(C)=\left(\frac{150}{7776}\right)\left(\frac{5}{6}\right)
\end{aligned}
$$

The total odds then are

$$
\begin{aligned}
& p=p(Y \mid A) p(A)+p(Y \mid B) p(B)+p(Y \mid C) p(C) \\
& p=(1)\left(\frac{6}{7776}\right)+\left(\frac{1}{6}\right)\left(\frac{150}{7776}\right)+\left(\frac{1}{6}\right)\left(\frac{150}{7776}\right)\left(\frac{5}{6}\right) \\
& p=0.006666
\end{aligned}
$$

150: 1 odds against
4) (Yahtzee program): Write a Matlab program to play Yahtzee.

- Assume you always go for a Yahtzee
- Up to two draw phases (three rolls total)
- Keep the largest pair (2 of a kind, 3-of a kind) and reroll the rest of the dice

```
% ECE 341 Random Proecsses
% Yahtzee Odds
% Monte-Carlo Simulation
tic
disp('------------------');
disp('Yahtzee odds using Monte-Carlo')
Rolls = 3;
Pair5 = 0;
disp('----');
for games = 1:1e5
    Dice = ceil( 6*rand(1,5) );
    Dice = sort(Dice);
    % disp(Dice);
    for turns = 2:Rolls
        % check for pairs
        N = zeros(1,5);
        for i=1:5
            for j=1:5
                if(Dice(i) == Dice(j))
                        N(i) = N(i) + 1;
            end
                end
        end
        [N,b] = sort(N, 'descend');
        Dice = Dice(b);
        if (N(1) == 4) Dice(5) = ceil( 6*rand(1,1) ); end
        if (N(1) == 3) Dice(4:5) = ceil( 6*rand(1,2) ); end
        if (N(1) == 2) Dice(3:5) = ceil( 6*rand(1,3) ); end
        if (N(1) == 1) Dice(2:5) = ceil( 6*rand(1,4) ); end
        % disp(Dice);
    end
    N = zeros(1,6);
    for i=1:6
        N(i) = sum(Dice == i);
    end
    [N,b] = sort(N, 'descend');
    if (N(1) == 5) Pair5 = Pair5 + 1; end
end
disp(' Rolls, Yahtzees');
disp([Rolls, Pair5]);
toc
```

5) With your program, do a Monte Carlo simlation for 1 million rolls of the dice and determine the

- Odds of getting a Yahtzee on one roll, and
- Odds of getting a Yahtzee after 3 rolls.

Sanity Check: With one roll (no re-rolls), I got Yahtzees \{ 92, $90,74,83\}$ times in 100,000 rolls. Taking the average

$$
p=\left(\frac{84.75}{100,000}\right)=0.0008475
$$

calcualted odds are

$$
p=\left(\frac{6}{7776}\right)=0.000772
$$

which is resonably close...

With 100,000 games, the number of Yahtzees is $\{1225,1262,1264,1242\}$.

```
Yahtzee odds using Monte-Carlo
----
    Rolls, Yahtzees
        2 1225
Elapsed time is 9.586119 seconds.
```

Taking the average the odds are roughly

$$
p=\left(\frac{1248}{100,000}\right)=0.01248 \text { or } 80.1: 1 \text { against }
$$

calcualted odds were

$$
p=0.00666
$$

but this only included two ways to get to Yahtzee so it should be a little lower...
6) repeat of problem \#2

z-Transforms (over)

Find the inverse z-transform
7) $\quad X=\left(\frac{0.01}{(z-0.95)(z-0.9)(z-0.85)}\right)$
multiply by z (planning ahead)

$$
z X=\left(\frac{0.01}{(z-0.95)(z-0.9)(z-0.85)}\right) z
$$

take the partial fraction expansion

$$
\begin{aligned}
& z X=\left(\left(\frac{2}{z-0.95}\right)+\left(\frac{-4}{z-0.9}\right)+\left(\frac{2}{z-0.85}\right)\right) z \\
& z X=\left(\left(\frac{2 z}{z-0.95}\right)+\left(\frac{-4 z}{z-0.9}\right)+\left(\frac{2 z}{z-0.85}\right)\right)
\end{aligned}
$$

Take the inverse z-transform

$$
z x(k)=\left(2(0.95)^{k}-4(0.9)^{k}+2(0.85)^{k}\right) u(k)
$$

Divide by z (delay by one sample)

$$
x(k)=\left(2(0.95)^{k-1}-4(0.9)^{k-1}+2(0.85)^{k-1}\right) u(k-1)
$$

You can also write this as

$$
x(k)=\left(2.1053(0.95)^{k}-4.444(0.9)^{k}+2.3529(0.85)^{k}\right) u(k-1)
$$

8) $\quad X=\left(\frac{0.1(z+1)(z-1)}{(z-0.9)(z-0.8)(z-0.7)}\right)$
multiply by z (planning ahead for when we take the inverse z -trnsform)

$$
z X=\left(\frac{0.1(z+1)(z-1)}{(z-0.9)(z-0.8)(z-0.7)}\right) z
$$

Take the partial fraction expansion

$$
\begin{aligned}
& z X=\left(\left(\frac{-0.95}{z-0.9}\right)+\left(\frac{3.6}{z-0.8}\right)+\left(\frac{-2.55}{z-0.7}\right)\right) z \\
& z X=\left(\left(\frac{-0.95 z}{z-0.9}\right)+\left(\frac{3.6 z}{z-0.8}\right)+\left(\frac{-2.55 z}{z-0.7}\right)\right)
\end{aligned}
$$

Take the inverse z-transform

$$
z x(k)=\left(-0.95(0.9)^{k}+3.6(0.8)^{k}-2.5(0.7)^{k}\right) u(k)
$$

Divide by z (delay by one sample)

$$
x(k)=\left(-0.95(0.9)^{k-1}+3.6(0.8)^{k-1}-2.5(0.7)^{k-1}\right) u(k-1)
$$

or equivalently

$$
x(k)=\left(-1.0556(0.9)^{k}+4.5(0.8)^{k}-3.5714(0.7)^{k}\right) u(k-1)
$$

9) A new Tesla Model Y costs $\$ 58,990$. If you take out a $36-$ month loan at 2.34% interest, what is your monthly payment? Solve using z-transforms.

The loan value at time k is

$$
x(k+1)=\left(1+\left(\frac{0.0234}{12}\right)\right) x(k)+x(0) \cdot \delta(k)-p \cdot u(k-1)
$$

(the loan happens at $\mathrm{k}=0$, meaning a delta function)
(the monthly payments are a constant for $\mathrm{k}>0$)
where p is your monthly payment starting at $\mathrm{k}=1$ (rather than $\mathrm{k}=0$). Taking the z -transform

$$
z X=(1.00195) X+X_{0}-p\left(\frac{1}{z-1}\right)
$$

Solving for X

$$
\begin{aligned}
& (z-1.00195) X=X_{0}-p\left(\frac{1}{z-1}\right) \\
& X=\left(\frac{1}{z-1.00195}\right) X_{0}-\left(\frac{p}{(z-1)(z-1.00195)}\right)
\end{aligned}
$$

Doing partial fractions

$$
\begin{aligned}
& z X=\left(\frac{z}{z-1.00195}\right) X_{0}-\left(\frac{p}{(z-1)(z-1.00195)}\right) z \\
& z X=\left(\frac{z}{z-1.00195}\right) X_{0}-\left(\left(\frac{512.82 p}{z-1.00195}\right)-\left(\frac{512.82 p}{z-1}\right)\right) z \\
& z X=\left(\frac{z}{z-1.00195}\right) X_{0}-\left(\frac{512.82 p z}{z-1.00195}\right)+\left(\frac{512.82 p z}{z-1}\right) \\
& z x(k)=\left((1.00195)^{k} X_{0}-512.82 p\left((1.00195)^{k}-1\right)\right) u(k)
\end{aligned}
$$

divide by z (delay one sample)

$$
x(k)=\left((1.00195)^{k-1} X_{0}-512.82 p\left((1.00195)^{k-1}-1\right)\right) u(k-1)
$$

At $\mathrm{k}=36$, the load is zero

$$
x(36)=0=\left((1.00195)^{35} X_{0}-512.82 p\left((1.00195)^{35}-1\right)\right)
$$

The monthly payments are then

$$
p=\left(\frac{1}{512.82}\right)\left(\frac{1.00195^{35}}{1-1.00195^{35}}\right) X_{0}=\$ 1745.24
$$

