ECE 341 - Homework \#7

Uniform and Exponential Distributions.

Uniform Distributions

Let

- a be a sample from A, a uniform distribution over the range of $(0,3)$
- b be a sample from B, a uniform distribution over the range of $(0,4)$

1) Determine the pdf for $y=a+b$ using moment generating funcitons (i.e. LaPlace transforms)

$$
\begin{aligned}
& A=\left(\frac{1}{3 s}\right)\left(1-e^{-3 s}\right) \\
& B=\left(\frac{1}{4 s}\right)\left(1-e^{-4 s}\right) \\
& Y=\left(\left(\frac{1}{3 s}\right)\left(1-e^{-3 s}\right)\right)\left(\left(\frac{1}{4 s}\right)\left(1-e^{-4 s}\right)\right)
\end{aligned}
$$

Doing some algebra

$$
Y=\left(\frac{1}{12 s^{2}}\right)\left(1-e^{-3 s}-e^{-4 s}+e^{-7 s}\right)
$$

take the inverse LaPlace transform, the pdf of $\mathrm{A}+\mathrm{B}$ is

$$
y(x)=\left(\frac{1}{12}\right)((x) u(x)-(x-3) u(x-3)-(x-4) u(x-4)+(x-7) u(x-7))
$$

or

$$
y(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\left(\frac{x}{12}\right) & 0<x<3 \\
\left(\frac{3}{12}\right) & 3<x<4 \\
\left(\frac{7-x}{12}\right) & 4<x<7 \\
0 & x<7
\end{array}\right.
$$

2) Determine the pdf for $a+b$ using convolution (by hand or Matlab)
```
>> t = [0:0.01:10]';
>> dt = 0.01;
>> t = [0:dt:10]';
>> A = (1/3)* (t>=0).* (t<3);
>> B = (1/4)* (t>=0).*(t<4);
>> Y = conv(A,B)*dt;
>> plot(t,Y)
??? Error using ==> plot
Vectors must be the same lengths.
>> Y = Y(1:length(t));
>> plot(t,Y)
>> xlabel('x'):
??? xlabel('x'):
    |
Error: Expression or statement is incomplete or
incorrect.
>> xlabel('x');
>> ylabel('pdf(x)');
>> ylim([0,0.3])
>>
```


3) Assume each resistor has a tolerance of 5% (i.e. a uniform distribution over the range of $(0.95,1.05)$ of the nominal value. Determine the mean and standard deviation for the voltage at Y for the following circuit using a Monte Carlo simulation.

The output is

$$
\begin{aligned}
& Y=\left(\frac{-R_{2}}{R_{1}}\right)\left(\frac{-R_{4}}{R_{3}}\right) 2 V \\
& Y=2\left(\frac{R_{2} R_{4}}{R_{1} R_{3}}\right)
\end{aligned}
$$

In Matlab

```
y = [];
for i=1:1000
    R1 = 1000 * (1 + (2*rand-1)*0.05);
    R2 = 2000 * (1 + (2*rand - 1)*0.05);
    R3 = 1000 * (1 + (2*rand-1)*0.05);
    R4 = 3000 * (1 + (2*rand-1)*0.05);
    Y = 2*R2*R4 / (R1*R3);
    Y = [Y ; Y];
end
>> mean(y)
ans = 12.0434
>> std(y)
ans=0.6916
```

Sidelight: Plot the cdf for this distribution

```
>> p = [1:1000]' / 1000;
>> plot(sort(y),p)
>> xlabel('Voltage');
>> ylabel('CDF');
```


Exponential Distributions

Let

- d be a sample from D, an exponential distribution with a mean of 6
- e be a sample from E, an exponential distribution with a mean of 10
- f be a sample from F , an exponential distribution with a mean of 12

4) Let $X=d+e$
a) Use convolution to find the pdf of X
```
>> dt = 0.01;
>> t = [0:dt:100]';
>> d = 1/6 * exp(-t/6);
>> e = 1/10 * exp(-t/10);
>> f = 1/12 * exp(-t/12);
>> X = conv(d,e) * dt;
>> Y = conv(X,f) * dt;
>> X = X(1:length(t));
>> Y = Y(1:length(t));
>> plot(t,X)
>> xlabel('Time (seconds)');
>> disp([t(1000),X(1000)])
    9.9900 0.0448
```


b) Use moment generating functions to find he pdf of X

$$
X=\left(\frac{1 / 6}{s+1 / 6}\right)\left(\frac{1 / 10}{s+1 / 10}\right)
$$

Doing partial fraction expansion and taking the inverse LaPlace transform

$$
\begin{aligned}
& X=\left(\frac{-0.25}{s+1 / 6}\right)+\left(\frac{0.25}{s+1 / 10}\right) \\
& x(t)=0.25\left(e^{-t / 10}-e^{-t / 6}\right) u(t)
\end{aligned}
$$

A 10 seconds

$$
x(10)=0.04475
$$

This matches what was calculated using convolutiopn
5) Use moment generating functions to determine the pdf for $Y=d+e+f$
a) Use convolution to find the pdf of Y

```
dt = 0.01;
t = [0:dt:100]';
d = 1/6 * exp(-t/6);
e = 1/10 * exp(-t/10);
f = 1/12 * exp(-t/12);
X = conv (d,e) * dt;
Y = conv (X,f) * dt;
X = X(1:length(t));
Y = Y(1:length(t));
plot(t,Y)
xlabel('Time (seconds)');
disp([t(1000),Y(1000)])
    9.9900 0.0220
```

b) Use moment generating functions to find he pdf of Y

$$
\begin{aligned}
& Y=\left(\frac{1 / 6}{s+1 / 6}\right)\left(\frac{1 / 10}{s+1 / 10}\right)\left(\frac{1 / 12}{s+1 / 12}\right) \\
& Y=\left(\frac{0.25}{s+1 / 6}\right)+\left(\frac{-1.25}{s+1 / 10}\right)+\left(\frac{1}{s+1 / 12}\right) \\
& y(t)=\left(0.25 e^{-t / 6}-1.25 e^{-t / 10}+e^{-t / 12}\right) u(t)
\end{aligned}
$$

c) Check that the two answers match at $\mathrm{t}=10$ seconds.

$$
y(10)=0.02197
$$

The answers match

