ECE 341 - Homework \#8

Queueing Theory \& Normal Distributions.

Queueing Theory

Assume you are running a fast-food restraunt.

- The time between customers arriving at a restaraunt is an exponential distribution with a mean of 90 seconds.
- The time it takes to serve each customer is an exponential distribution with a mean of 60 seconds.

1) Run a single Monte-Carlo simulation for this restaraunt over the span of one hour.

- Give the formula for each column in you simulation
- What is the longest waiting time for a customer in your simulation?
- What is the largest queue over the span of one hour?

First, generate random arrival and serving times with the above exponential distributions

```
DATA = [];
for i=1:100
    p = rand;
    Tarr = -90*log(1-p);
    p = rand;
    Tser = -60*log(1-p);
    DATA = [DATA ; [i, Tarr, Tser]];
end
round (DATA)
```

$\#$	arrive	serve
1	152	142
2	12	147
3	90	6
4	29	47
5	284	201
6	15	212
7	284	40
8	145	9

Equations:
E: $\quad \mathrm{E} 11=\mathrm{E} 10+\mathrm{C} 11$
F: F11=MAX(G10,E11)
G: G11=F11+D11
H: $\quad \mathrm{H} 11=\mathrm{F} 11-\mathrm{E} 11$
I: $\quad \mathrm{I} 11=(\mathrm{E} 11<\mathrm{G} 10) * 1+(\mathrm{E} 11<\mathrm{G} 9)^{*} 1+(\mathrm{E} 11<\mathrm{G} 8) * 1+(\mathrm{E} 11<\mathrm{G} 7)^{*} 1+(\mathrm{E} 11<\mathrm{G} 6) * 1+(\mathrm{E} 11<\mathrm{G} 5) * 1$

| Customer Arrival | Serve | t (Arr) | t (Serve) | t (done) | t (Wait) | Queue | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 152 | 142 | 152 | 152 | 294 | 0 | 0 |
| 2 | 12 | 147 | 164 | 294 | 441 | 130 | 1 |
| 3 | 90 | 6 | 254 | 441 | 447 | 187 | 2 |
| 4 | 29 | 47 | 283 | 447 | 494 | 164 | 3 |
| 5 | 284 | 201 | 567 | 567 | 768 | 0 | 0 |
| 6 | 15 | 212 | 582 | 768 | 980 | 186 | 1 |
| 7 | 284 | 40 | 866 | 980 | 1,020 | 114 | 1 |
| 8 | 145 | 9 | 1,011 | 1,020 | 1,029 | 9 | 1 |
| 9 | 49 | 148 | 1,060 | 1,060 | 1,208 | 0 | 0 |
| 10 | 141 | 192 | 1,201 | 1,208 | 1,400 | 7 | 1 |
| 11 | 96 | 2 | 1,297 | 1,400 | 1,402 | 103 | 1 |
| 12 | 170 | 163 | 1,467 | 1,467 | 1,630 | 0 | 0 |
| 13 | 102 | 85 | 1,569 | 1,630 | 1,715 | 61 | 1 |
| 14 | 122 | 30 | 1,691 | 1,715 | 1,745 | 24 | 1 |
| 15 | 96 | 11 | 1,787 | 1,787 | 1,798 | 0 | 0 |
| 16 | 110 | 2 | 1,897 | 1,897 | 1,899 | 0 | 0 |
| 17 | 29 | 3 | 1,926 | 1,926 | 1,929 | 0 | 0 |
| 18 | 9 | 104 | 1,935 | 1,935 | 2,039 | 0 | 0 |
| 19 | 107 | 23 | 2,042 | 2,042 | 2,065 | 0 | 0 |
| 20 | 270 | 2 | 2,312 | 2,312 | 2,314 | 0 | 0 |
| 21 | 52 | 29 | 2,364 | 2,364 | 2,393 | 0 | 0 |
| 22 | 131 | 95 | 2,495 | 2,495 | 2,590 | 0 | 0 |
| 23 | 19 | 40 | 2,514 | 2,590 | 2,630 | 76 | 1 |
| 24 | 53 | 62 | 2,567 | 2,630 | 2,692 | 63 | 2 |
| 25 | 111 | 84 | 2,678 | 2,692 | 2,776 | 14 | 1 |
| 26 | 29 | 68 | 2,707 | 2,776 | 2,844 | 69 | 1 |
| 27 | 96 | 11 | 2,803 | 2,844 | 2,855 | 41 | 1 |
| 28 | 11 | 41 | 2,814 | 2,855 | 2,896 | 41 | 2 |
| 29 | 289 | 25 | 3,103 | 3,103 | 3,128 | 0 | 0 |
| 30 | 79 | 15 | 3,182 | 3,182 | 3,197 | 0 | 0 |
| 31 | 125 | 18 | 3,307 | 3,307 | 3,325 | 0 | 0 |
| 32 | 63 | 72 | 3,370 | 3,370 | 3,442 | 0 | 0 |
| 33 | 199 | 192 | 3,569 | 3,569 | 3,761 | 0 | 0 |
| | | | | | | | 0 |

Normal Distribution

The mean and standard deviation for a 6 and 8 -sided die are

$$
\begin{array}{ll}
\mu_{d 6}=3.50 & \mu_{d 8}=4.50 \\
\sigma_{d 6}=1.7078 & \sigma_{d 8}=2.291 \\
\sigma_{d 6}^{2}=2.9166 & \sigma_{d 8}^{2}=5.2487
\end{array}
$$

2) Let Y be the sum of rolling five 6 -sided dice (5 d 6) plus five 8 -sided dice (5 d 8).

$$
\mathrm{Y}=5 \mathrm{~d} 6+5 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?

$$
\begin{aligned}
& \mu=5 \cdot 3.50+5 \cdot 4.50 \\
& \mu=40.0 \\
& \sigma^{2}=5 \cdot 2.9166+5 \cdot 5.2487 \\
& \sigma^{2}=40.8263 \\
& \sigma=6.3895
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

From Stattrek, 5\% tails corresponds to a z-score of 1.645

$$
\begin{array}{ll}
\mu-1.645 \sigma<Y<\mu+1.645 \sigma & \mathrm{p}=90 \% \\
29.489<Y<50.511 &
\end{array}
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 49.5 ?

$$
z=\left(\frac{49.5-40}{6.3895}\right)=1.4868
$$

From StatTrek, this corresponds to a probability of 0.069

There is a 6.92% chance of rolling $\mathbf{4 9 . 5}$ or more
3) Check your answer using a Monte-Carlo simulation in Matlab with 100,000 rolls:

```
N = 0;
for i=1:1e5
    Y = sum( ceil( 6*rand(5,1) ) ) + sum( ceil( 8*rand(5,1) ) );
    if(Y > 49.5)
        N = N + 1;
        end
    end
N / 1e5
ans = 0.0689 (vs. 6.92% )
```

which is close to the compted score using a normal approximation
4) Fargo's high temperature in the month of July has been measured by Hector Airport since 1942.

- Determine the mean and standard deviation for the high in July
- Assuming a normal distribution, determine the probability that the high in July will exceed 100F this year (note: data set is linked on Bison Academy)

```
>> July = DATA(:,8);
>> x = mean(July)
x = 94.63
>> s = std(July)
s = 4.00
```

The z-score for 100 F is

$$
z=\left(\frac{100-94.63}{4.00}\right)=1.3425
$$

from StatTrek, a z-score of -1.3425 corresponds to a probability of 9.0%
There is a 9.0% chance that it will break 100F this coming July

11 : 1 odds against

