ECE 341 - Homework \#10

Testing with Normal Distributions \& Regression Analysis. Due Thursday, June 2nd

Testing with Normal Distributions

Let A be the sum of 10 uniform distributions in the range of $(0,6)$

$$
A=\operatorname{sum}(6 * \operatorname{rand}(1,10)) ;
$$

Let B be the sum of 8 uniform distributions in the range of $(0,10)$

$$
B=\operatorname{sum}(10 * r a n d(1,8)) ;
$$

1) What is the mean and standard deviation for A and B ?

For A:

$$
\begin{aligned}
& \mu_{a}=10 \cdot\left(\frac{0+6}{2}\right)=30 \\
& \sigma_{a}^{2}=10 \cdot\left(\frac{(6-0)^{2}}{12}\right)=30
\end{aligned}
$$

For B

$$
\begin{aligned}
& \mu_{b}=8 \cdot\left(\frac{0+10}{2}\right)=40 \\
& \sigma_{b}^{2}=8 \cdot\left(\frac{(10-0)^{2}}{12}\right)=66.67
\end{aligned}
$$

2) Using a normal approximation, determine the 90% confidence interval for A .

From StatTrek, 5\% tails corresponds to a z-score of 1.645

$$
\begin{aligned}
& \mu-1.645 \sigma<A<\mu+1.645 \sigma \\
& 20.99<A<39.01
\end{aligned}
$$

3) Using a normal approximation, determine the probability that $\mathrm{A}>40$.

$$
z=\left(\frac{40-30}{5.4772}\right)=1.8257
$$

From StatTrek, this corresponds to a probabillity less than 0.034
There is a $\mathbf{3 . 4 \%}$ chance that A will be more than 40
4) Let Y be a sample from either A or B . To determine which group Y came from, a threshold test is used:

- If $\mathrm{Y}<35, \mathrm{Y}$ is assumed to be from A (negative)
- If $\mathrm{Y}>35$, Y is assumed to be from B (positive)

Determine the probability of

- A false positive (Y is from A but testing resulted in it being assigned to population B)
- A false negative (Y is from B but testing resulted in it being assigned to population A)

The z -score for $\mathrm{A}>35$ is

$$
z=\left(\frac{35-30}{5.4772}\right)=0.9129
$$

From StatTrek, this corresponds to a probability of 0.181
There is an $\mathbf{1 8 . 1 \%}$ chance of a false positive

The z -score for $\mathrm{B}<35$ is

$$
z=\left(\frac{40-35}{8.165}\right)=0.6124
$$

From StatTrek, this corresponds to a probability of 0.270
There is a $\mathbf{2 7 . 0 \%}$ chance of a false negative

Regression Analysis

The average temperature in June in Fargo, ND is available at

```
http://www.bisonacademy.com/ECE111/Code/Fargo_Weather_Monthly_Avg.txt
```

5) Find the least-squares curve fit for this data as

$$
T=a y+b
$$

where T is the temeprture in degrees F and y is the year.
From this curve fit, how much has June in Fargo warmed up since 1942?

```
>> June = DATA(:,7);
>> year = DATA(:,1);
>> B = [year, year*0+1];
>> A = inv(B'*B)*B'*June
A =
    0.0510
    -35.2987
>> plot(year,June,'b.-',year,B*A,'r');
```

In 80 years, the average temperature has gone up 4.08 degrees F

$$
d T=0.0510 \cdot 80=4.08 F
$$

6) Determine the correlation coefficient between

The average temperature in June and July
if June is hot, is July going to be hot?

```
>> July = DATA(:,8);
>> June = DATA(:,7);
>> Cov = mean(June .* July) - mean(June) * mean(July)
Cov =
    2.8057
>> correlation = Cov / ( std(June) * std(July) )
correlation =
    0.3624
```

The average temprature in June and January.
if January is hot, is June going to be hot?

```
>> June = DATA(:,7);
>> Janiary = DATA(:,2);
>> January = DATA(:,2);
>> Cov = mean(June .* January) - mean(June) * mean(January)
Cov =
    3.5356
>> correlation = Cov / ( std(June) * std(January) )
correlation =
    0.1640
>>
```

