ECE 341 - Homework #11

Markov Chains.

Problem 1 & 2) Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 45% chance of winning
- There is a 15% chance of a tie, and
- Team B has a 40% chance of winning

In order to win the match, a team must be **up** by 2 games.

1) Determine the probability that team A wins the match after k games for $k = \{0 \dots 10\}$ using matrix multiplication.

The state-transition matrix is

$\begin{bmatrix} A_2 \end{bmatrix}$		1	0.45	0	0	0	$ \begin{bmatrix} A_2 \\ A_1 \\ A_0 \\ A_{-1} \end{bmatrix} $
A_1		0	0.15	0.45	0	0	A_1
A_0	=	0	0.4	0.15	0.45	0	A_0
A_{-1}		0	0	0.4	0.15	0	A_{-1}
A_{-2}		0	0	0	0.4	1	A_{-2}

In Matlab

```
>> A=[1,0.45,0,0,0;0,0.15,0.45,0,0;0,0.4,0.15,0.45,0;0,0,0.4,0.15,0;0,0,0,0.4,1]
```

1.00		1500 500 1000 0 0	0.15	500)00	0 0.4500 0.1500 0.4000	0 0 0 1.0000
>> X0 =	[0,0,1,0,	0]'				
0 0 1 0 0						
>> G0 =	[1,0,0,0,	0] * A	^0 *	X0		
G0 =	0					
>> G1 =	[1,0,0,0,	0] * A	^1 *	X0		
G1 =	0					
>> G2 =	[1,0,0,0,	0] * A	^2 *	X0		
G2 =	0.2025					
>> G3 =	[1,0,0,0,	0] * A	^3 *	X0		

```
G3 = 0.2633
>> G4 = [1,0,0,0,0] * A^4 * X0
G4 = 0.3498
>> G5 = [1,0,0,0,0] * A^5 * X0
G5 = 0.3963
>> G6 = [1,0,0,0,0] * A^6 * X0
G6 = 0.4395
>> G7 = [1,0,0,0,0] * A^7 * X0
G7 = 0.4681
>> G8 = [1,0,0,0,0] * A^8 * X0
G8 = 0.4912
>> G9 = [1,0,0,0,0] * A^9 * X0
G9 = 0.5079
>> G10 = [1,0,0,0,0] * A^10 * X0
G10 = 0.5206
```

- 2) Determine the z-transform for the probability that A wins the match after k games
 - From the z transforms, determine the explicit function for p(A) wins after game k.

Find the z-transform

Multuply by z to get the z-transform for p(k)

$$P = \left(\frac{0.2025z}{(z-1)(z-0.75)(z+0.45)}\right)$$

Taking the inverse z-trasform...

Find the partial fraction expansion

$$P = \left(\frac{0.2025}{(z-1)(z-0.75)(z+0.45)}\right)z$$

$$P = \left(\left(\frac{0.5586}{z-1}\right) + \left(\frac{-0.6750}{z-0.75}\right) + \left(\frac{0.1164}{z+0.45}\right)\right)z$$

$$P = \left(\frac{0.5586z}{z-1}\right) + \left(\frac{-0.6750z}{z-0.75}\right) + \left(\frac{0.1164z}{z+0.45}\right)$$

$$p(k) = \left(0.5586 - 0.6750(0.75)^{k} + 0.1164(-0.45)^{k}\right)u(k)$$

Solving in Matlab

```
for k=1:10
    p = 0.5586 - 0.6750*(0.75^k) + 0.1164*(-0.45)^k;
    disp([k,p])
end
```

	k	p(k)	problem	1
	1.0000	-0.0000	0	
	2.0000	0.2025	0.2025	
	3.0000	0.2632	0.2633	
	4.0000	0.3498	0.3498	
	5.0000	0.3963	0.3963	
	6.0000	0.4394	0.4395	
	7.0000	0.4681	0.4681	
	8.0000	0.4912	0.4819	
	9.0000	0.5078	0.5079	
-	10.0000	0.5206	0.5206	

- 3) Two players are playing a game of tennis. To win a game, a player must win 4 points and be up by 2 points.
 - If player A reaches 4 points and player B has less than 3 points, the game is over and player A wins.
 - If player A reaches 4 points and player B has 3 points, then the game reverts to 'win by 2' rules. Both players keep playing until one of them is up by 2 games.

Suppose:

- Player A has a 55% chance of winning any given point
- Player B has a 45% chance of winning any given point.

What is the probability that player A wins the game (first to 4 games, win by 2)?

• Note: This is a combination of a binomial distribution (A has 4 points while B has 0, 1, or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

The ways A can win are

- a) A wins 3 of first 3 games then A wins game 4 (A up 3-0 then wins)
- b) A wins 3 of first 4 games then game 5 (A up 3-1 then A wins)
- c) A wins 3 of rist 5 games then game 6) (A up 3-2 then A wins)
- d) A and B are tied (3,3) then A wins a best-of-2 series (Markov chain)

This is a conditional probability

a) A wins fist 3 of 3 games then A wins game 4

$$p(a) = \begin{pmatrix} 3\\ 3 \end{pmatrix} (0.55)^3 (0.45)^0 = 0.16638$$
$$p(A|a)p(a) = (0.55)(0.16638) = 0.09151$$

b) A wins 3 of first 4 games then wins game 5

$$p(b) = \begin{pmatrix} 4\\ 3 \end{pmatrix} (0.55^3(0.45))^1 = 0.29948$$
$$p(A|b)p(b) = (0.55)(0.29948) = 0.16471$$

c) A wins 3 of first 5 games then wins game 6

$$p(c) = \begin{pmatrix} 5\\ 3 \end{pmatrix} (0.55)^3 (0.45)^2 = 0.33691$$
$$p(A|c)p(c) = 0.18530$$

d) A wins best-of-two series starting at tied: 3-3 (d)

$$p(d) = \begin{pmatrix} 6\\ 3 \end{pmatrix} (0.55)^3 (0.45)^3 = 0.30322$$

p(A) winning from here comes from a Markov chain

	_ p2 _		- 1	0.55	0	0	0	$\begin{bmatrix} p2 \end{bmatrix}$
	<i>p</i> 1		0	0	0.55	0	0	p1
Z	p0	=	0	0.45	0	0.55	0	<i>p</i> 0
	<i>m</i> 1		0	0	0.45	0	0	<i>m</i> 1
	<i>m</i> 2		0	0	0	0.45	1_	m2

Finding the result after 100 matches in Matlab

>> A = [1,0.55,0,0,0;0,0,0.55,0,0;0,0.45,0,0.55,0;0,0,0.45,0,0;0,0,0,0.45,1]

1.0000 0 0 0	0.5500 0 0.4500 0	0 0.5500 0 0.4500 0	0 0.5500 0.4500	0 0 0 1.0000
A^100				
1.0000 0 0 0	0.8196 0.0000 0 0.0000 0.1804	0.5990 0.0000 0.4010	0.3295 0.0000 0 0.0000 0.6705	0 0 0 1.0000

>>

>>

If you start out 0-0 (column #3), A wins (row #1) 59.90% of the time

$$p(A|d) = 0.5990$$

and

p(A|d)p(d) = 0.18163

The total chances of A winning are then

$$p(A) = p(A|a)p(a) + p(A|b)p(b) + p(A|c)p(c) + p(A|d)p(d)$$

$$p(A) = 0.62315$$

With this format, player A has a 62.315% chance of winnign the match