ECE 341 - Homework \#15

F-Test and ANOVA. Due Friday, June 10th

Test of a 3+ Populations

1) The average temperature in Fargo for three different months is:

		mean	std	n
A	June	65.8032	3.0791	80
B	July	70.9427	2.5143	80
C	Aug	69.0227	2.6740	80

Determine if the means are the same using an ANOVA test.
Determine the global mean

$$
\bar{G}=\left(\frac{1}{N}\right)\left(n_{a} \bar{A}+n_{b} \bar{B}+n_{c} \bar{C}\right)
$$

Determine MSSb and MSSw

$$
\begin{aligned}
& M S S_{b}=\left(\frac{1}{k-1}\right)\left(n_{a}(\bar{A}-\bar{G})^{2}+n_{b}(\bar{B}-\bar{G})^{2}+n_{c}(\bar{C}-\bar{G})^{2}\right) \\
& M S S_{w}=\left(\frac{1}{N-k}\right)\left(\left(n_{a}-1\right) s_{a}^{2}+\left(n_{b}-1\right) s_{b}^{2}+\left(n_{c}-1\right) s_{c}^{2}\right)
\end{aligned}
$$

Matlab Code:

```
Xa = 65.8032;
Sa = 3.0791;
Xb = 70.9427;
Sb = 2.5143;
Xc = 69.0227;
Sc = 2.6740;
Na = 80;
Nb = 80;
Nc = 80;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

$$
\begin{array}{lr}
\mathrm{N}= & 240 \\
\mathrm{G}= & 68.5895 \\
\mathrm{MSSb}= & 539.5472 \\
\text { MSSw }= & 7.6509 \\
\mathbf{F}= & \mathbf{7 0 . 5 2 0 3}
\end{array}
$$

You can also get the same answer with an ANOVA table

A	B	C	A	B	C
			$\begin{aligned} & 3.0791 \\ & \operatorname{std}(A) \end{aligned}$	$\begin{gathered} 2.5143 \\ \text { std(B) } \end{gathered}$	$\begin{aligned} & 2.6740 \\ & \text { std(C) } \end{aligned}$
$\mathrm{Na}=80$	$\mathrm{Nb}=80$	$\mathrm{Nc}=80$	748.98 sum of squares	$\begin{gathered} 499.41 \\ \text { sum of squares } \end{gathered}$	$\begin{gathered} 564.87 \\ \text { sum of squres } \end{gathered}$
$N=240$				1813.3 sum of squares	
65.8032 mean(A)	70.9427 mean(B)	$\begin{aligned} & 69.0027 \\ & \text { mean(C) } \end{aligned}$		MSSw = 7.6509	
$\begin{gathered} 68.5895 \\ \mathrm{G}= \\ \text { global mean } \end{gathered}$					
$\begin{gathered} 621.09 \\ \mathrm{Na}(A-G)^{2} \end{gathered}$	$\begin{gathered} 422.91 \\ \mathrm{Nb}(\mathrm{~B}-\mathrm{G})^{2} \end{gathered}$	$\begin{gathered} 15.01 \\ \mathrm{Nc}(\mathrm{C}-\mathrm{G})^{2} \end{gathered}$			
	$\begin{gathered} 1079.1 \\ \text { sum of squres } \end{gathered}$				
MSSb $=539.54$					

```
F = MSSb / MSSw
F = 70.5203
```

Now use an F table with

- numerator $=2$ degrees of freedom ($\mathrm{k}-1$)
- denominator $=237$ degrees of freedom ($\mathrm{N}-\mathrm{k}$)

This corresponds to a probability of 1 ($>99.995 \%$)

I am more than $\mathbf{9 9 . 9 9 5 \%}$ that the three data sets have a different mean
You'd have to do 1 on 1 t-tests to determine which one (or more) is the outlier.
2) The global average for three decades are:

		mean	std	n
A	$1880-1899$	-0.1766	0.121	240
B	$1960-1969$	0.0233	0.1161	240
C	$2010-2019$	0.7944	0.1685	240

Determine if the means are the same using an ANOVA test.
Matlab Code:

```
Xa = -0.1766;
Sa = 0.121;
Xb = 0.0233;
Sb = 0.1161;
Xc = 0.7944;
Sc = 0.1685;
Na = 240;
Nb = 240;
Nc = 240;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na* (Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

```
N = 720
G = 0.2137
MSSb = 63.0958
MSSW = 0.0188
F = 3349.5e
```

Now use an F table with

- numerator $=2$ degrees of freedom $(\mathrm{k}-1)$
- denominator $=717$ degrees of freedom $(\mathrm{N}-\mathrm{k})$

This corresponds to a probability of $1(>99.995 \%)$
(note: An F-score of 5 corresponds to a probability of 99.3%, so this is way off the chart)
3) The scores for three players playing Hungry Hungry Hippo are:

A:	73	63	79	59	60		
B:	52	31	75	64	53	74	
C:	53	69	68	74	74	62	70

Determine if the means are the same using an ANOVA test.

Matlab Code:

```
A = [llllll
B =[[\begin{array}{lllllll}{52}&{31}&{75}&{64}&{53}&{74];}\end{array}]
C = [\begin{array}{llllllll}{53}&{69}&{68}&{74}&{74}&{62}&{70];}\end{array}]
Xa = mean(A);
Sa = std(A);
Xb = mean(B);
Sb = std(B);
Xc = mean(C);
Sc = std(C);
Na = length(A);
Nb = length(B);
Nc = length(C);
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result

```
N = 18
G = 64.0556
MSSb = 156.2270
MSSw = 134.1660
F = 1.1644
>>
```

Now use an F table with

- numerator $=2$ degrees of freedom (k-1)
- denominator $=15$ degrees of freedom (N-k)

This corresponds to a probability of 0.66

There is a $\mathbf{6 6 \%}$ chance that these populations have different means

