ECE 341 - Homework #15

F-Test and ANOVA. Due Friday, June 10th

Test of a 3+ Populations

1) The average temperature in Fargo for three different months is:

		mean	std	n
А	June	65.8032	3.0791	80
В	July	70.9427	2.5143	80
С	Aug	69.0227	2.6740	80

Determine if the means are the same using an ANOVA test.

Determine the global mean

$$\overline{G} = \left(\frac{1}{N}\right) \left(n_a \overline{A} + n_b \overline{B} + n_c \overline{C} \right)$$

Determine MSSb and MSSw

$$MSS_{b} = \left(\frac{1}{k-1}\right) \left(n_{a} \left(\overline{A} - \overline{G}\right)^{2} + n_{b} \left(\overline{B} - \overline{G}\right)^{2} + n_{c} \left(\overline{C} - \overline{G}\right)^{2} \right)$$
$$MSS_{w} = \left(\frac{1}{N-k}\right) \left((n_{a} - 1)s_{a}^{2} + (n_{b} - 1)s_{b}^{2} + (n_{c} - 1)s_{c}^{2} \right)$$

Matlab Code:

Xa = 65.8032; Sa = 3.0791; Xb = 70.9427; Sb = 2.5143; Xc = 69.0227; Sc = 2.6740; Na = 80; Nb = 80; Nc = 80; k = 3; N = Na + Nb + Nc G = (Na*Xa + Nb*Xb + Nc*Xc) / N MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1) MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k) F = MSSb / MSSw

Result:

F =		70.5203
MSSw	=	7.6509
MSSb	=	539.5472
G =		68.5895
N =		240

You can also get the same answer with an ANOVA table

A	В	С	A	В	С	
			3.0791 std(A)	2.5143 std(B)	2.6740 std(C)	
Na = 80	Nb = 80	Nc = 80	748.98 sum of squares	499.41 sum of squares	564.87 sum of squres	
	N = 240			1813.3 sum of squares		
65.8032 mean(A)	70.9427 mean(B)	69.0027 mean(C)	MSSw = 7.6509			
	68.5895 G = global mean					
621.09 Na (A - G)²	422.91 Nb (B - G) ²	15.01 Nc (C - G)²				
	1079.1 sum of squres					
	MSSb = 539.54					

F = MSSb / MSSw

F = 70.5203

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 237 degrees of freedom (N-k)

This corresponds to a probability of 1 (> 99.995%)

I am more than 99.995% that the three data sets have a different mean

You'd have to do 1 on 1 t-tests to determine which one (or more) is the outlier.

2) The global average for three decades are:

		mean	std	n
А	1880-1899	-0.1766	0.121	240
В	1960-1969	0.0233	0.1161	240
С	2010-2019	0.7944	0.1685	240

Determine if the means are the same using an ANOVA test.

Matlab Code:

```
Xa = -0.1766;
Sa = 0.121;
Xb = 0.0233;
Sb = 0.1161;
Xc = 0.7944;
Sc = 0.1685;
Na = 240;
Nb = 240;
Nc = 240;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

N = 720 G = 0.2137 MSSb = 63.0958 MSSw = 0.0188 F = 3349.5e

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 717 degrees of freedom (N-k)

This corresponds to a probability of 1 (> 99.995%)

(note: An F-score of 5 corresponds to a probability of 99.3%, so this is way off the chart)

3) The scores for three players playing Hungry Hungry Hippo are:

A:	73	63	79	59	60		
В:	52	31	75	64	53	74	
С:	53	69	68	74	74	62	70

Determine if the means are the same using an ANOVA test.

Matlab Code:

```
63 79
31 75
69 68
                                 60];
A = [73]
                          59
                          59
64
74
                                 53
B = [52
                                        74];
C = [53]
                          74
                                 74
                                       62 70];
Xa = mean(A);
Sa = std(A);
Xb = mean(B);
Sb = std(B);
Xc = mean(C);
Sc = std(C);
Na = length(A);
Nb = length(B);
Nc = length(C);
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^{2} + Nb*(Xb-G)^{2} + Nc*(Xc-G)^{2}) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result

```
N = 18
G = 64.0556
MSSb = 156.2270
MSSw = 134.1660
F = 1.1644
```

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 15 degrees of freedom (N-k)

This corresponds to a probability of 0.66

There is a 66% chance that these populations have different means