ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability

Open-Book, Open Notes. Calculators \& Tarot cards allowed. Chegg or other people not allowed.

1. Enumeration (dice)

Let X be the sum of two 6 -sided dice. Determine the probability that X is divisible by 3 using enumeration.

Die \#2	1	Die \#1					
		1	2	3	4	5	6
		2	3	4	5	6	7
	2	3	4	5	6	7	8
	3	4	5	6	7	8	9
	4	5	6	7	8	9	10
	5	6	7	8	9	10	11
	6	7	8	9	10	11	12

Twelve results are divisible by 3 .
The odds of rolling a number that's divisible by three is

$$
p=\left(\frac{12}{36}\right)=\left(\frac{1}{3}\right)
$$

2. Combinations and Permutations (cards)

In 8 -card stud,

- 3 cards are placed face up in the middle, and
- Each player is dealt 5 cards.

Each player can then make the best hand they can with these 8 cards.
a) How many hands are possible in 8 -card stud?

- How many ways can you deal 8 cards from a 52-card deck. Order doesn't matter.

$$
N=\binom{52}{8}=752,538,150
$$

b) Determine the probabililty of having 2-pair in 8 -card stud.

- Hand $=(a a b b c d e f)$ or
- Hand $=(a a b b c c d e)$ or
- $H a n d=(a a b b c c d d)$
where each letter is a different value.
Hand $=a \operatorname{ab}$ cdef
(13 cards choose 2 for $\mathrm{a} \& \mathrm{~b}$)(4 a's in deck, choose 2)(4 b's choose 2)(11 choose 4 for cdef)(4 c's choose 1)...

$$
\begin{aligned}
& M=\binom{13}{2}\binom{4}{2}\binom{4}{2}\binom{11}{4}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1} \\
& M_{1}=237,219,840
\end{aligned}
$$

Hand $=a a b b c c d e$
(13 choose 3 for abc)(4 a's choose 2)(4 b's choose 2$)(4$ c's choose 2$)(10$ values choose 2 for de)(4c1)(4c1)

$$
\begin{aligned}
& M=\binom{13}{3}\binom{4}{2}\binom{4}{2}\binom{4}{2}\binom{10}{2}\binom{4}{1}\binom{4}{1} \\
& M_{2}=44,478,720
\end{aligned}
$$

Hand $=\mathrm{aa} \mathrm{bb} \mathrm{cc} \mathrm{dd}$
(13 choose 4 for abcd)(4 choose 2$)(4$ choose 2$)(4$ choose 2$)(4 \mathrm{c} 2)$

$$
\begin{aligned}
& M=\binom{13}{4}\binom{4}{2}\binom{4}{2}\binom{4}{2}\binom{4}{2} \\
& M_{3}=926,640
\end{aligned}
$$

p (2-pair) is

$$
p=\left(\frac{M_{1}+M_{2}+M_{3}}{\binom{52}{8}}\right)=0.37556
$$

Check: Running a Monte Carlo simulation with 100,000 hands results in 37,786 two-pair hands ($\mathrm{p}=0.37786$)

3. Binomial Distribution

Let
M be your birth month (1..12) plus 2
Determine the probability of rolling M ones when rolling sixteen 5 -sided dice $(p=1 / 5)$

M birth month plus $2(4.15)$	probability of $\mathrm{M}_{\mathrm{p}=1 / 5}$ $\mathbf{5 + 2}=\mathbf{7}$

$$
\mathrm{p}(7 \text { ones in } 16 \text { rolls })=\binom{16}{7}\left(\frac{1}{5}\right)^{7}\left(\frac{4}{5}\right)^{9}
$$

$$
\mathrm{p}=0.01965
$$

4. Convolution

Determine by hand (i.e. show your work - Matlab doesn't count) the product of the following polynomials using convolution.

$$
Y=\left(2+M x+D x^{2}\right)(3+4 x)
$$

where

- M is your birth month (1..12) and
- D is your birth date (1..31)

M birth month (1..12)	D birth date (1..31)	$\mathrm{Y}(\mathrm{x})$
$\mathbf{5}$	$\mathbf{1 4}$	

$\mathrm{k}=-1$	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	
	2	5 x	$14 \mathrm{x}^{2}$		result
4 x	3			6	

$\mathrm{k}=-1$	$\mathrm{k}=0$	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	result
-	2	5 x	$14 \mathrm{x}^{2}$	-	$23 x$
-	4 x	3	-	-	
-	8 x	15 x	-	-	

$k=-1$	k=0	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	result
-	2	5 x	$14{ }^{2}$	-	$62 x^{2}$
-	-	4 x	3	-	
		$20 x^{2}$	$42 x^{2}$	-	
$k=-1$	k=0	$\mathrm{k}=1$	$\mathrm{k}=2$	$\mathrm{k}=3$	result
-	2	5 x	$14 x^{2}$	-	$56 x^{3}$
-	-	-	4 x	3	
	-		$56 x^{3}$		

Result:

$$
6+23 x+62 x^{2}+56 x^{3}
$$

5. Geometric \& z-Transforms

Let

- X be the number of rolls of an 8 -sided die until you get a one with the following moment-generating function:

$$
X=\left(\frac{1 / 8}{z-7 / 8}\right)
$$

- Y be the number of rolls of an 4 -sided die until you get a one with the following moment-generating function:

$$
Y=\left(\frac{1 / 4}{z-3 / 4}\right)
$$

Determine the pdf for $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ using z -transforms
(the number of times you have to roll an 8 sided die until you get a 1 , then roll a 4 sided die until you get a l)

$$
\begin{aligned}
& W=\left(\frac{1 / 8}{z-7 / 8}\right)\left(\frac{1 / 4}{z-3 / 4}\right) \\
& z^{2} W=\left(\frac{z / 32}{(z-7 / 8)(z-3 / 4)}\right) z \\
& z^{2} W=\left(\left(\frac{0.21875}{z-7 / 8}\right)+\left(\frac{-0.1875}{z-3 / 4}\right)\right) z \\
& z^{2} w(k)=\left(0.21875\left(\frac{7}{8}\right)^{k}-0.1875\left(\frac{3}{4}\right)^{k}\right) u(k) \\
& w(k)=\left(0.21875\left(\frac{7}{8}\right)^{k-2}-0.1875\left(\frac{3}{4}\right)^{k-2}\right) u(k-2)
\end{aligned}
$$

