ECE 341 - Test \#2

Continuous Probability
Open-Book, Open Notes. Calculators, Matlab, Tarot cards. Chegg and other people not allowed

1) Continuous PDF

Let

$$
y=\left\{\begin{array}{cc}
\alpha \cdot x(3-x) & 0<x<3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Determine the scalar, α, so that this is a valid pdf (i.e. the total area $=1.0000$)

$$
\begin{aligned}
& \text { area }=\alpha \int_{0}^{3}\left(3 x-x^{2}\right) d x=1 \\
& \alpha \cdot\left(\frac{3}{2} x^{2}-\frac{1}{3} x^{3}\right)_{0}^{3}= \\
& \alpha\left(\frac{27}{2}-\frac{27}{3}\right)=1 \\
& \alpha=\frac{2}{9}
\end{aligned}
$$

b) Determine the moment generating function (i.e. LaPlace transform)

$$
y=\frac{2}{9}\left(3 x-x^{2}\right)
$$

One derivative:

$$
y^{\prime}=\frac{2}{9}(3-2 x)
$$

Two derivatives

$$
y^{\prime \prime}=\frac{2}{9}(3 \delta(x)-2+3 \delta(x-3))
$$

Three derivatives

$$
y^{\prime \prime \prime}=\frac{2}{9}(-2 \delta(x)+2 \delta(x-3))
$$

The LaPlace transforms is then

$$
Y(s)=\left(\frac{2}{3 s^{2}}\right)\left(1+e^{-3 s}\right)+\left(\frac{4}{9 s^{3}}\right)\left(-1+e^{-3 s}\right)
$$

2) Uniform Distribuitions

Let A and B be continuous uniform distributions

- $A=$ uniform over the interval of $(0,13)$
- $\quad B=$ uniform over the interval of $(0, m)$ where x is your birth month (1..12),
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

Use moment generating functions to determine the pdf for X (i.e. LaPlace Transforms)

$$
\begin{aligned}
& A=\left(\frac{1}{13 s}\right)\left(1-e^{-13 s}\right) \\
& B=\left(\frac{1}{5 s}\right)\left(1-e^{-5 s}\right) \\
& X=A B=\left(\frac{1}{13 s}\right)\left(1-e^{-13 s}\right) \cdot\left(\frac{1}{5 s}\right)\left(1-e^{-5 s}\right) \\
& X=\left(\frac{1}{65 s^{2}}\right)\left(1-e^{-5 s}-e^{-13 s}+e^{-18 s}\right)
\end{aligned}
$$

Taking the inverse LaPlace transform

$$
x(t)=\left(\frac{1}{65}\right)(t u(t)-(t-5) u(t-5)-(t-13) u(t-13)+(t-18) u(t-18))
$$

3) Geometric \& Gamma PDF

Let A, B, and C be continuous exponential distributions:

- A has a mean of 13
- B has a mean of m (m is your birth month (1..12)), and
- $\quad \mathrm{C}$ has a mean of d (d is your birth date (1..31))
(note: if you have a repeated root, add one to m or d)

Determine the pdf of $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$ using moment generating functions (LaPlace transforms)
Determine the pdf of $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$ using moment generating functions (LaPlace transforms)

$$
\begin{aligned}
& A(s)=\left(\frac{1 / 13}{s+1 / 13}\right) \\
& B(s)=\left(\frac{1 / 5}{s+1 / 5}\right) \\
& C(s)=\left(\frac{1 / 14}{s+1 / 14}\right)
\end{aligned}
$$

$$
Y=A B C=\left(\frac{\frac{1}{13}}{s+\frac{1}{13}}\right)\left(\frac{\frac{1}{5}}{s+\frac{1}{5}}\right)\left(\frac{\frac{1}{14}}{s+\frac{1}{14}}\right)
$$

Using partial fractions

$$
Y=\left(\frac{-1.6250}{s+\frac{1}{13}}\right)+\left(\frac{0.0694}{s+\frac{1}{5}}\right)+\left(\frac{1.5556}{s+\frac{1}{14}}\right)
$$

Taking the inverse LaPlace transform gives the pdf

$$
y=-1.6250 e^{-t / 13}+0.0694 e^{-t / 5}+1.5556 e^{-t / 14} \quad \text { for } t>0
$$

4) Central Limit Theorem

Let A, B, and C be continuous uniform distributions

- A $=$ uniform over the interval of $(0,5)$
- $\quad B=$ uniform over the interval of $(0, m)$ where m is your birth month (1..12),
- $\quad \mathrm{C}=$ uniform over the interval of $(0, \mathrm{~d})$ where d is your birth date ($1 . .31$), and
- $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
a) Find the mean and standard deviation of Y

	range	mean	variance
A	$(0,5)$	2.5	$25 / 12$
B	$(0,5)$	2.5	$25 / 12$
C	$(0,14)$	7.0	$196 / 12$
$\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$		12.0	$246 / 12$

Y has

- a mean of 12.00
- a variance of 20.50
- a standard deviation of 4.5277
b) Use a normal approximation to Y to determine the
- z-score corresponding to $\mathrm{Y}=7$ and
- The probability that $\mathrm{Y}>7$

$$
z=\left(\frac{12-7}{4.5277}\right)=1.1043
$$

From StatTrek, this corresponds to a probability of 0.865
There is an 86.5% chance that Y will be more than 7

normalized pdf for y : area to the right of 7 is 0.865

5) Testing with Normal pdf

x is selected at random from population A or B . Assume A and B have normal distributions:

	mean	standard deviation
A (negative)	60	15
B (positive)	100	20

A threshold is used to classify x :

- If $x<70$, it is assigned to population A
- If $x>70$, it is assigned to population B.

Normalized pdf for A (red) and B (blue)
a) What is the probability of a false positive?

- x is from population A but is assigned to population B
- (area of the right tail for the red curve above)

The z-score is

$$
z=\left(\frac{70-60}{15}\right)=0.6667
$$

From StatTrek, this corresponds to a probability of 0.253

There is a $\mathbf{2 5 . 3 \%}$ chance of a false positive

b) What is the probabilty of a false negative?

- x is from population B but is assigned to population A
- (area of the left tail for the blue curve aboce)

The z -score is

$$
z=\left(\frac{100-70}{20}\right)=1.500
$$

From StatTrek, this corresponds to a probability of 0.067
There is a 6.7% chance of a false negative

