ECE 341 - Test \#2

Continuous Probability
Open-Book, Open Notes. Calculators, Matlab, Tarot cards. Chegg and other people not allowed

1) Continuous PDF

Let

$$
y=\left\{\begin{array}{cc}
\alpha \cdot x(3-x) & 0<x<3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

a) Determine the scalar, α, so that this is a valid pdf (i.e. the total area $=1.0000$)
b) Determine the moment generating function (i.e. LaPlace transform)

2) Uniform Distribuitions

Let A, B, and C be continuous uniform distributions

- A = uniform over the interval of $(0,13)$
- $\quad \mathrm{B}=$ uniform over the interval of $(0, \mathrm{~m})$ where x is your birth month (1..12),
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

Use moment generating functions to determine the pdf for X (i.e. LaPlace Transforms)

3) Exponential \& Gamma PDF

Let A, B, and C be continuous exponential distributions:

- A has a mean of 13
- B has a mean of m (m is your birth month (1..12)), and
- $\quad \mathrm{C}$ has a mean of d (d is your birth date (1..31))
(note: if you have a repeated root, add one to m or d)

Determine the pdf of $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$ using moment generating functions (LaPlace transforms)

4) Central Limit Theorem

Let A, B, and C be continuous uniform distributions

- A = uniform over the interval of $(0,5)$
- $\quad B=$ uniform over the interval of $(0, m)$ where m is your birth month (1..12),
- $\mathrm{C}=$ uniform over the interval of $(0, \mathrm{~d})$ where d is your birth date (1..31), and
- $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
a) Find the mean and standard deviation of Y
b) Use a normal approximation to Y to determine the
- z -score corresponding to $\mathrm{Y}=7$ and
- The probability that $\mathrm{Y}>7$

5) Testing with Normal pdf

x is selected at random from population A or B . Assume A and B have normal distributions:

	mean	standard deviation
A (negative)	60	15
B (positive)	100	20

A threshold is used to classify x :

- If $x<70$, it is assigned to population A
- If $x>70$, it is assigned to population B.
a) What is the probability of a false positive?
- x is from population A but is assigned to population B
b) What is the probabilty of a false negative?
- x is from population B but is assigned to population A

