ECE 341-Test \#3

Markov Chains and Data Analysis
Open-Book, Open Notes. Calculators, Matlab, Tarot cards, StatTrek allowed. Giving or receiving help from others or from Chegg not allowed

1) Markov Chains: Four people are playing ball. Each second, a person either passes the ball or keeps it with probability p as shown below.

a) Express the probability that each person has the ball at time $\mathrm{k}+1$ as:

$$
\begin{aligned}
& X(k+1)=A X(k) \\
& {\left[\begin{array}{l}
A(k+1) \\
B(k+1) \\
C(k+1) \\
D(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
0.7 & 0 & 0 & 0 \\
0.2 & 0.9 & 0 & 0 \\
0.1 & 0.1 & 0.6 & 0 \\
0 & 0 & 0.4 & 1
\end{array}\right]\left[\begin{array}{c}
A(k) \\
B(k) \\
C(k) \\
D(k)
\end{array}\right]}
\end{aligned}
$$

b) Assume the z -transform for person D having the ball is

$$
Y(z)=\left(\frac{0.04 z(z-0.7)}{(z-1)(z-0.9)(z-0.7)(z-0.6)}\right)
$$

Find $\mathrm{y}(\mathrm{k})$ using z -Trasforms
Take the partial fractione expansion

$$
Y=\left(\left(\frac{1}{z-1}\right)+\left(\frac{-1.3333}{z-0.9}\right)+\left(\frac{0}{z-0.7}\right)+\left(\frac{0.3333}{z-0.6}\right)\right) z
$$

Take the inverse-z transform

$$
y(k)=1-1.3333(0.9)^{k}+0(0.7)^{k}+0.3333(0.6)^{k} \quad \mathrm{k}>0
$$

2) t-Test (One data set). A Monte-Carlo simulation was run for 8 -card poker. Each simulation deals 100,000 hands of 8 -cards. The number of times a hand contains 2-pair is recorded:

$$
\text { \# hands }=\left\{\begin{array}{lll}
37625 & 3780237611 & 37431
\end{array}\right\}
$$

a) Determine the mean and standard deviation for this data

- mean $=37,617$
- $\mathbf{s t d}=\mathbf{1 5 1 . 5 7}$
b) (individual) If I run this experiment one more time, what number will I get with a confidence level of 90% ? (5\% tails)
5% tails with 3 degrees of freedom results in $t=2.355$

$$
\bar{x}-2.355 s<2 \text { pair }<\bar{x}+2.355 s
$$

37, $260<2$ pair $<37,974$

$$
\mathrm{p}=0.9
$$

c) (population) From this data, what is the 90% confidence interval for the actual probability of getting 2-pair when dealt 8 cards?

Since you're dealing with the population, divide the variance by n

$$
\begin{array}{ll}
\bar{x}-2.355\left(\frac{s}{\sqrt{4}}\right)<\mu<\bar{x}+2.355\left(\frac{s}{\sqrt{4}}\right) & \\
37,439<\mu<37,766 & \mathrm{p}=0.9
\end{array}
$$

3) t-Test (Two data sets): The global average temperature over two decades are as follows (source: NOAA):

Time-Span	mean (milli-degrees F)	standard deviation (milli-degrees F)	\# years
A: $1880-1889$	-176.58	80.98	10
B: $1890-1899$	-243.58	92.92	10

a) (Individual) What is the probability that any given year in A is warmer than any given year in B ?

Create a variable $\mathrm{W}=\mathrm{A}-\mathrm{B}$

$$
\begin{array}{ll}
\bar{x}_{w}=\bar{x}_{a}-\bar{x}_{b} & s_{w}=\sqrt{s_{a}^{2}+s_{b}^{2}} \\
\bar{x}_{w}=67.00 & s_{w}=123.255
\end{array}
$$

The t -score for W (single tail test at $\mathrm{W}=0$)

$$
t=\left(\frac{\bar{x}_{w}-0}{s_{w}}\right)=0.5436
$$

Degrees of freedom is about 9 (minimum dof for A and B)
From StatTrek, a t-score with 9 degrees of freedom is 70%

- There is a $\mathbf{7 0 . 0 0 \%}$ chance that a random year in A is warmer than a random year in B
- There is a $\mathbf{3 0 . 0 0 \%}$ chance that a random year in A is colder than a random year in B
b) (population) What is the probability that the temperature is rising? (mean of B is more than the mean of A)?

Here, you divide the variance by the sample size

$$
s_{w}=\sqrt{\frac{s_{a}^{2}}{n_{a}}+\frac{s_{b}^{2}}{n_{b}}}=39.070
$$

The t-score is now

$$
t=\left(\frac{\bar{x}_{w}-0}{s_{w}}\right)=1.7190
$$

This correspnds to a probability of 94.01%

- It is $\mathbf{9 4 . 0 1 \%}$ likely that decade \mathbf{A} is warmer than decade B
- There is a $\mathbf{5 . 9 9 \%}$ chance that decade \mathbf{A} is colder than decade \mathbf{B}

4) Chi-Squared Test: The following Matlab code generated 100 random values for a 7 sided die.
```
Result = zeros(7,1);
for i=1:100
    die = ceil( 7*(rand ^ 0.8));
    Result(die) = Result(die) + 1;
    end
Result
```

a) Generate the frequency of rolling each number $1 . .7$ with 100 rolls of the die

```
>> Result = }\begin{array}{lllllllll}{7}&{13}&{13}&{12}&{16}&{20}&{19}
```

b) Determine if X has a uniform distribution (fair die) using a Chi-squared test.

die roll	p	np	N	chi-squared
1	$1 / 7$	14.28	7	3.71
2	$1 / 7$	14.28	13	0.11
3	$1 / 7$	14.28	13	0.11
4	$1 / 7$	14.28	12	0.36
5	$1 / 7$	14.28	16	0.21
6	$1 / 7$	14.28	20	2.29
7	$1 / 7$	14.28	19	1.56

From StatTrek, a chi-squared score of 8.36 with 6 degrees of freedom corresponds to a probability of 70.0%

From the data, there is a 70% chance this is not a fair die
5) ANOVA (Three data sets): The global average temperature over three decades are presented below.

Determine the probability that the data sets have a different mean (temperatures are changing) using an F-test.

Time-Span	mean (milli-degrees F)	standard deviation (milli-degrees F)	\# years
A: $1880-1889$	-176.58	80.98	10
B: $1890-1899$	-243.58	92.92	10
C: $1900-1910$	-305.83	131.23	10

In matlab

```
Xa = -176.58; %mean(A);
Va = 80.98^2; %var(A);
Xb = -243.58; %mean(B);
Vb = 92.92^2; %var(B);
Xc = -305.83; %mean(C);
Vc = 131.23^2; %var(C);
Na = length(A);
Nb = length(B);
Nc = length(C);
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Va + (Nb-1)*Vb + (NC-1)*Vc) / (N-k)
F = MSSb / MSSw
N = 30
G = -241.9967
MSSb = 4.1783e+004
MSSw = 1.0804e+004
F = 3.8672
```

From StatTrek, an F-score with

- 2 degrees of freedom in the numerator
- 27 dof in the denominator
- F-score of 3.6872
results in $\mathrm{p}=97 \%$

There is a $\mathbf{9 7 \%}$ chance that these populations have different means

- Back in 1890-1910, it looked like the eaeth was cooling off.
- There's some thought that, if left alone, we would be heading towards another ice age
- Meaning that global warming is so great, it's changing the natural cycles of the Earch

