ECE 341-Test \#3

Markov Chains and Data Analysis
Open-Book, Open Notes. Calculators, Matlab, Tarot cards, StatTrek allowed.
Giving or receiving help from others or from Chegg not allowed

1) Markov Chains: Four people are playing ball. Each second, a person either passes the ball or keeps it with probability p as shown below.
a) Express the probability that each person has the ball at time $\mathrm{k}+1$ as:

$$
X(k+1)=A X(k)
$$

b) Assume the z -transform for person D having the ball is

$$
Y(z)=\left(\frac{0.04 z(z-0.7)}{(z-1)(z-0.9)(z-0.7)(z-0.6)}\right)
$$

Find $y(k)$ using z-Trasforms

2) t-Test (One data set). A Monte-Carlo simulation was run for 8 -card poker. Each simulation deals 100,000 hands of 8 -cards. The number of times a hand contains 2-pair is recorded:

$$
\text { \# hands }=\left\{\begin{array}{lll}
37625 & 378023761137431
\end{array}\right\}
$$

a) Determine the mean and standard deviation for this data
b) (individual) If I run this experiment one more time, what number will I get with a confidence level of 90% ? (5\% tails)
c) (population) From this data, what is the 90% confidence interval for the actual probability of getting 2-pair when dealt 8 cards?
3) t-Test (Two data sets): The global average temperature over two decades are as follows (source: NOAA):

Time-Span	mean (milli-degrees F)	standard deviation (milli-degrees F)	\# years
A: $1880-1889$	-176.58	80.98	10
B: $1890-1899$	-243.58	92.92	10

a) (Individual) What is the probability that any given year in A is warmer than any given year in B ?
b) (population) What is the probability that the temperature is rising? (mean of B is more than the mean of A)?
4) Chi-Squared Test: The following Matlab code generated 100 random values for a 7 sided die.

```
Result = zeros(7,1);
for i=1:100
    die = ceil( 7*(rand ^ 0.8));
    Result(die) = Result(die) + 1;
    end
Result
```

a) Generate the frequency of rolling each number $1 . .7$ with 100 rolls of the die
b) Determine if X has a uniform distribution (fair die) using a Chi-squared test.
5) ANOVA (Three data sets): The global average temperature over three decades are presented below.

Determine the probability that the data sets have a different mean (temperatures are changing) using an F-test.

Time-Span	mean (milli-degrees F)	standard deviation (milli-degrees F)	\# years
A: $1880-1889$	-176.58	80.98	10
B: $1890-1899$	-243.58	92.92	10
C: $1900-1910$	-305.83	131.23	10

