ECE 341 - Homework \#7

Uniform and Exponential Distributions. Summer 2023

Uniform Distributions

Let

- a be a sample from A, a uniform distribution over the range of $(0,3)$
- b be a sample from B, a uniform distribution over the range of $(0,5)$

1) Determine the pdf for $\mathbf{a}+\mathbf{b}$ using moment generating funcitons (i.e. LaPlace transforms)
2) Determine the pdf for $\mathbf{a}+\mathbf{b}$ using convolution (by hand or Matlab)
3) Assume each resistor has a tolerance of 5% (i.e. a uniform distribution over the range of $(0.95,1.05)$ of the nominal value. Determine the mean and standard deviation for the voltage at Y for the following circuit using a Monte Carlo simulation.

Exponential Distributions

Let

- d be a sample from D, an exponential distribution with a mean of 10
- e be a sample from E, ar/ exponential distribution with a mean of 15
- f be a sapple from F/an exponential distribution with a mean of 20

Skip 4 \& 5
(Pascal distribution)
(next lecture)
4) Let $X=d+e$

- a) Use conyolution to find the pdf of X
- b) Use moment genexating functions to find the pdf of X
- c) Che -k that the two answers match at $\mathrm{t}=10$ seconds.

5) Let $y=d+e+f$

- a) Use convolution to find the pdईof Y
b) Use moment generating functions to find he pdf of Y
c) Check that the two answers match at $\mathrm{t}=10$ seconds.

Queueing Theory

Assume you are running a fast-food restraunt.

- The time between customers arriving at a restaraunt is an exponential distribution with a mean of 50 seconds.
- The time it takes to serve each customer is an exponential distribution with a mean of 40 seconds.

6) Run a single Monte-Carlo simulation for this restaraunt over the span of one hour.

- Give the formula for each column in you simulation
- What is the longest waiting time for a customer in your simulation?
- What is the largest queue over the span of one hour?

