ECE 341-Homework \#8

Gamma, Poisson, \& Normal Distributions. Summer 2023

Gamma Distributions

Let A be an exponential distribution with a mean of 10 seconds
The time until the next customer arrives
Let B be the time until three customers arrive (B has a gamma distribution)

1) Determine the pdf for B using LaPlace transforms.

- From your results, determine the pdf at $\mathrm{B}=20$

2) Determine the pdf of B using convolution

- From your results, determine the pdf at $B=20$

Poisson Distributions

3) Determine the probability that 3 customers will arrive within 20 seconds $(0<t<20)$

- Using moment generating functions
- Using convolution

4) In D\&D, you automatically make your saving throw if you roll a 20 on a 20 -sided die ($p=5 \%$).

- Using a binomial pdf, determine the probability of making your saving throw four times in 20 rolls
- Using a Poisson approximation, determine the probability of making four saving throws in 20 rolls

Normal Distribution

- Let x be a random number from a normal distribution with a mean of 10 and a standard deviation of 6
- Let y be a random number from a normal distribution with a mean of 15 and a standard deviation of 8
- Let z be a random number from a normal distribution with a mean of 20 and a standard deviation of 10

5) Let $\mathrm{F}=\mathrm{x}+\mathrm{y}$. Determine the probability that $\mathrm{F}>40$

- a) Using a z -score
- b) Using a Monte-Carlo simulation with 100,000 samples of F

6) Let $\mathrm{G}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. Determine the probability that $\mathrm{G}>60$

- a) Using a z-score
- b) Using a Monte-Carlo simulation with 100,000 samples of G

In Matlab: use randn (standard normal). multiply by the standard deviation, add the mean

```
x = randn*6 + 10;
y = randn*8 + 15;
z = randn*10 + 20;
F = x + y;
G = x + y + z;
```

