ECE 341 - Homework \#1 Solution

Tree Diagrams and Enumeration. Summer 2023

1) Two teams, A and B, are playing a best of 5 game series.

- The series is over once one team wins 3 games.
- A starts with +2 points (odds)

Draw the tree diagram for all possible outcomes of the series.

2) List all possible combinations of rolling two 5-sided dice (d5) (enumaration).

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
1	2	3	4	5
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
2	2	3	4	5
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$
3	3	3	4	5
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$
4	4	4	4	5
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$
5	5	5	5	5

The odds are

- 1: $1 / 25$
- 2: $3 / 25$
- 3: $5 / 25$
- 4: 7/25
- $5: \quad 9 / 25$

Two players, A and B , are playing a game of dice.

- Player A rolls two 5-sided dice (2d5) the largest of the two numbers (i.e. problem \#2)
- Player B rolls an 8 -sided die (d8).

Player A wins on ties.
3) What is the conditional probability

- Player A wins given B's score is 3 (B rolled a 3)

A wins if A gets $\{3,4,5\}$ points.
The odds are:
3: $\quad 5 / 25$
4: $\quad 7 / 25$
5: $\quad 9 / 25$
Total: 21/25
The probability that A wins given that B rolled a 3 is 21/25
4) What is the probability that player A will win any given game?

This is a conditional probability

- $\mathrm{p}(\mathrm{AlB}=1) \mathrm{p}(\mathrm{B}=1)=(25 / 25)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=2) \mathrm{p}(\mathrm{B}=2)=(24 / 25)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=3) \mathrm{p}(\mathrm{B}=3)=(21 / 25)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=4) \mathrm{p}(\mathrm{B}=4)=(16 / 25)(1 / 8)$
- $\mathrm{p}(\mathrm{A} \mid \mathrm{B}=5) \mathrm{p}(\mathrm{B}=5)=(9 / 25)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=6) \mathrm{p}(\mathrm{B}=6)=(0)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=7) \mathrm{p}(\mathrm{B}=7)=(0)(1 / 8)$
- $\mathrm{p}(\mathrm{AlB}=8) \mathrm{p}(\mathrm{B}=8)=(0)(1 / 8)$

Adding them all up

$$
\mathrm{p}(\mathrm{~A})=95 / 200=0.4750
$$

A has a 47.5\% chance of winning this game

Enumeration \& Farkle

Write a Matlab program to go through every combination of 6d6 and determine...
5) The odds of rolling 4-of-a-kind $=1800 / 46656=3.86 \%$
6) The odds of rolling three doubles $=1800 / 46656=3.86 \%$

```
Problem #5 & #6: Farkle
    xxxx ab aa bb cc Total
        1800 1800 46656
Elapsed time is 1.390626 seconds.
```

Matlab Code:

```
tic
Pair4 = 0;
Pair222 = 0
Total = 0;
for d1 = 1:6
    for d2 = 1:6
        for d3 = 1:6
            for d4 = 1:6
                for d5 = 1:6
                    for d6 = 1:6
                            Total = Total + 1;
                            Dice = [d1,d2,d3,d4,d5,d6];
                            % check for pairs
                            N = zeros(1,6);
                    for i=1:6
                        for j=1:6
                                    if(Dice(j) == i)
                                    N(i) = N(i) + 1;
                                    end
                            end
                            end
                            [N,b] = sort(N, 'descend');
                    if ( (N(1) == 4) & (N (2) < 2))
                                    Pair4 = Pair4 + 1;
                    end
                    if((N(1)==2) & (N (2)==2) & (N (3)==2) )
                                    Pair222 = Pair222 + 1;
                    end
                    end
                        end
                end
            end
        end
end
clc
disp('Problem #5 & #6: Farkle')
disp(' xxxx ab aa bb cc Total');
disp([Pair4, Pair222, Total]);
toc
```


Enumeration in 6-card Poker

7) In 6 -card poker, you're dealt 6 cards and keep the best 5. Determine using enumeration the odds of being dealt 2-pair

$$
\text { hand }=x x y y a b \quad a \text { and } b \text { different than } x \text { and } y \text { (could be the same though) }
$$

In 6-Card Poker, there are 2,532,816 ways to get 2-pair
There are 20,358,520 different hands
The odds are

$$
p=\left(\frac{2,532,816}{20,358,520}\right)=0.1244
$$

There is a $\mathbf{1 2 . 4 4 \%}$ chance of getting 2-pair with 6-card poker
8) Determine using enumeration the odds of being dealt one-pair

$$
\text { hand }=\mathrm{xx} \mathrm{abcd} \quad \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \mathrm{x} \text { all different }
$$

In 6-card poker, there are $9,884,160$ ways to get one pair
There are 20,358,520 different hands
The odds are

$$
p=\left(\frac{9,884,160}{20,358,520}\right)=0.4855
$$

There is a 48.55\% chance of getting a pair in 6-card poker

Code:

```
% 6-Card Stud
% Probability of 2-pair & 2 of a kind
tic
Pair22 = 0; % 2-pair
Pair2 = 0; % pair
H = 0; % total number of hands
for c1=1:47
    for c2 = c1+1:48
                for c3 = c2+1:49
                    clc
                        disp([c1,c2, c3])
                        for c4 = c3+1:50
                        for c5 = c4+1:51
                        for c6 = c5+1:52
                            H = H + 1
                            Hand = [c1, c2, c3, c4, c5, c6];
                        Value = mod(Hand,13) + 1;
                            Suit = floor(Hand/13) + 1;
                            N = zeros(1,13);
                    for n=1:13
                            N(n) = sum(Value == n);
                    end
                                [N,a] = sort(N, 'descend');
                            if ((N(1) == 2)*(N(2) == 2)) Pair22 = Pair22 + 1; end
                            if ((N(1) == 2)*(N(2) == 1)) Pair2 = Pair2 + 1; end
                            end
                end
                end
            end
        end
end
[H, Pair22, Pair2]
toc
```

note: on my computer, this code took 10 minutes to run

- Enumeration works, but it can be really slow
- A better method might be useful (combinatorics)

