ECE 341 - Homework \#2

Combinatorics \& Card Games. Summer 2023

Combinatorics in Bridge

The card game bridge uses a 52 -card deck. Each person is dealt 13 cards for their hand.

1) How many different hands are possible? (order doesn't matter)

$$
M=\binom{52}{13}=635,013,559,600
$$

What is the probability of having 7 cards of one suit in your hand?

$$
\begin{aligned}
& \mathrm{N}=(4 \text { suits choose } 1)(13 \text { cards of that suit choose } 7)(39 \text { other cards choose } 6) \\
& N=\binom{4}{1}\binom{13}{7}\binom{39}{6} \\
& N=22,394,644,272
\end{aligned}
$$

The probability is

$$
p=\left(\frac{N}{M}\right)=0.035266
$$

There is a $\mathbf{3 . 5 2 \%}$ chance of being dealt 7 cards of one suit ($\mathbf{2 8 . 3} \mathbf{:} \mathbf{1}$ odds against)
\#2) What is the probability of having two face-cards (Jacks, Queens, Kings, or Aces)?

$$
\begin{aligned}
& \mathrm{N}=(16 \text { face cards, choose } 2)(36 \text { other cards, choose } 11) \\
& N=\binom{16}{2}\binom{36}{11}=72,096,635,520 \\
& p=\left(\frac{N}{M}\right)=0.113536
\end{aligned}
$$

There is an $\mathbf{1 1 . 3 5 \%}$ chance you'll have only two face cards in your hand

3) Check your answer using Matlab and a Monte-Carlo simulation

With 100,000 bridge hands, my results were:

- 3073 hands with 7 -of-a-suit (3.073%)
- 11508 hands with two face-cards (11.508%)

	Calcualed Odds p	Expected 100,000 Hands	Monte-Carlo 100,000 Hands
7-Card Suit	3.5266%	$3,526.6$	3,627
			3,470
			35,17
2 Face Cards	11.3536%	$11,353.6$	11,298
			11,473
			11,367

This matches my calculations. Code for problem \#3

```
% Bridge
tic
High2 = 0;
Suit7 = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:13);
    Value = mod(Hand-1,13) + 1;
    Suit = ceil(Hand/13);
% check for 7 of a suit
    N = zeros(1,4);
    for n=1:4
        N(n) = sum(Suit == n);
        end
    N = sort(N, 'descend');
    if(N(1) == 7)
        Suit7 = Suit7 + 1;
        end
% check for high-cards
    N = sum(Value == 1) + sum(Value > 10);
    if(N == 2)
        High2 = High2 + 1;
        end
    end
clc
disp(' 7 of suit 2 face cards')
disp([Suit7, High2])
toc
        7 of suit 2 face cards
        3627 11298
Elapsed time is 8.123007 seconds.
>>
```


In 6-card poker, you're dealt 6 cards

4) Compute the odds of 2-pair in 6-card poker using combinatorics.

note: your answer should match what you founding using enumeration.
hand = xx yy ab
\# hands possible

$$
M=\binom{52}{6}=20,358,520
$$

Using enumeration, $\mathrm{M}=20,358,520$ (matches homework \#1)
\# hands that are 2-pair ($\mathrm{N}=2,532,816$ from enumeration $)$

$$
\mathrm{N}=\mathrm{xx} y \mathrm{y} a b+\mathrm{xx} y \mathrm{y} z z
$$

xx yy ab

$$
\begin{aligned}
& \mathrm{N}=(13 \mathrm{c} 2 \text { for } \mathrm{x} \text { and } \mathrm{y})(4 \mathrm{c} 2 \text { for } \mathrm{x})(4 \mathrm{c} 2 \text { for } \mathrm{y}) *(11 \mathrm{c} 2 \text { for } \mathrm{ab})(4 \mathrm{c} 1 \text { for } \mathrm{a})(4 \mathrm{c} 1 \text { for } \mathrm{b}) \\
& N_{1}=\binom{13}{2}\binom{4}{2}\binom{4}{2} \cdot\binom{11}{2}\binom{4}{1}\binom{4}{1} \\
& \mathrm{~N} 1=2,471,040
\end{aligned}
$$

xx yy zz

$$
\mathrm{N} 2=(13 \mathrm{c} 3 \text { for } \mathrm{xyx})(4 \mathrm{c} 2 \text { for } \mathrm{x})(4 \mathrm{c} 2 \text { for } y)(4 \mathrm{c} 2 \text { for } \mathrm{z})
$$

$$
N_{2}=\binom{13}{3}\binom{4}{2}\binom{4}{2}\binom{4}{2}
$$

$$
\mathrm{N} 2=61,776
$$

$\mathrm{N} 1+\mathrm{N} 2=2,532,816$ (this matches with what we got with enumeration)

The probability is then

$$
p=\left(\frac{N}{M}\right)=12.44 \%
$$

5) Compute the odds being dealt one-pair using combinatorics

again, your answer should match what you founding using enumeration.
hand $=x x a b c d$
From enumeration, $\mathrm{N}=9,884,160$
From combinatorics

$$
\begin{aligned}
& \mathrm{N}=(13 \text { values for } \mathrm{x} \text {, choose } 1)(4 \text { x's choose } 2)(12 \text { values not } \mathrm{x} \text { choose } 4)(4 \text { choose } 1 \text { for abcd }) \\
& N=\binom{13}{1}\binom{4}{2}\binom{12}{4}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1} \\
& N=9,884,160
\end{aligned}
$$

This matches what we got with enumeration.

The probability is

$$
p=\left(\frac{N}{M}\right)=48.55 \%
$$

6) Determine the odds of a 2-pair and 1-pair using Matlab and a Monte-Carlo simulation and 100,000 hands of 6-card poker

	Enumeration p	Combinatorics p	Monte-Carlo p
2-Pair	12.44%	12.44%	12.323%
			12.404%
			12.622%
Pair	48.55%	48.55%	48.642%
			48.535%
			48.497%

All three methods give similar results. Monte-Carlo results have some error but are close

Problem \#6 (code)

```
% 6-Card Stud
tic
Pair22 = 0;
Pair2 = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:6);
    Value = mod((Hand-1),13) + 1;
    Suit = ceil(Hand/13);
    N = zeros(1,13);
    for n=1:13
        N(n) = sum(Value == n);
            end
        [N,a] = sort(N, 'descend');
    if ((N(1) == 2)*(N(2) == 2)) Pair22 = Pair22 + 1; end
    if ((N(1) == 2)*(N(2) < 2)) Pair2 = Pair2 + 1; end
    end
    clc
    disp(' 2-Pair Pair');
disp([Pair22, Pair2]);
    toc
        2-Pair Pair
        12323 48642
        12404 48535
        12622 48497
    Elapsed time is 10.885058 seconds.
```


Conditional Probability in 6-Card Poker

7) Compute the probability of getting 4-of-a-kind if there is a single draw step

- a) If you are dealt 4-of-a-kind, draw no cards
- b) If you are dealt 3-of-a-kind, draw 3 cards
- c) If you are dealt 2-pair or 2-of-a-kind, draw 4 cards
- d) If you are dealt no pairs, draw 5 cards.
hand $=\operatorname{xxxx} \quad$ draw 0
hand $=x x x$ abc discard $a b c$, draw 3
hand $=x x$ abcd discard abcd, draw 4
hand $=$ abcdef discard abcde, draw 5

Using conditional probability

$$
p(4)=p(4 \mid A) p(A)+p(4 \mid B) p(B)+p(4 \mid c) p(C)+p(4 \mid D) p(D)
$$

a) dealt 4-of-a-kind

$$
\begin{aligned}
& p(A)=\frac{\binom{13}{1}\binom{4}{4}\binom{48}{2}}{\binom{52}{6}}=0.000720 \\
& p(4 \mid A)=1 \\
& p(4 \mid A) p(A)=0.000720
\end{aligned}
$$

b) Dealt 3-of-a-kind (draw 3 and get the needed card to make 4-of-a-kind)

$$
\begin{aligned}
& p(B)=\left(\frac{\binom{13}{1}\binom{4}{3}\binom{12}{3}\binom{4}{1}\binom{4}{1}\binom{4}{1}}{\binom{52}{6}}\right)=0.035963 \\
& p(4 \mid B)=\left(\frac{\binom{1}{1}\binom{45}{2}}{\binom{46}{3}}\right)=0.065217 \\
& p(4 \mid B) p(B)=0.0023454
\end{aligned}
$$

c) dealt pair or 2-pair

$$
\mathrm{p}(\mathrm{C})=0.1244+0.4855=0.6099(\text { problem } \# 4)
$$

Draw 4 cards and get the two you need for 4 of a kind

$$
\begin{aligned}
& p(4 \mid C)=\left(\frac{\binom{2}{2}\binom{44}{2}}{\binom{46}{4}}\right)=0.0057971 \\
& p(4 \mid C) p(C)=0.0035356
\end{aligned}
$$

d) Dealt no pairs, keep one card and draw 5 new

$$
\begin{aligned}
& p(D)=\left(\frac{\binom{13}{6}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{1}}{\binom{52}{6}}\right)=0.3452478 \\
& p(4 \mid D)=\left(\frac{\binom{3}{3}\binom{43}{2}}{\binom{46}{5}}\right)=0.0006587 \\
& p(4 \mid D) p(D)=0.0002274
\end{aligned}
$$

Adding it all up

$$
p(4)=0.0068287
$$

8) Check your answers using a Monte Carlo simulation with 100,000 of 6-card draw poker

The calculated odds are 0.68287% chanec of getting 4 of a kind.

- With 100,000 hands, you should get 682.87 hands that are four of a kind.

	Calculations p	Calculations 100,000 hands	Monte-Carlo 100,000 hands
4 of a kind	0.0068287	682.287	669
			658
			689
			627
			701
		646	

Code:

```
% ECE 341 Homework #2
% 6 card draw, trying for 4-of-a-kind
tic
Pair4 = 0;
for i0 = 1:1e5
    X = rand(1,52);
    [a,Deck] = sort(X);
    Hand = Deck(1:6);
    Value = mod(Hand-1,13) + 1;
    N = Value / 100;
    for i=1:6
        for j=1:6
            if(Value(i) == Value(j)) N(i) = N(i) + 1; end
        end
    end
    [N,b] = sort(N, 'descend');
    N = floor(N);
    Hand = Hand(b);
    Value = mod(Hand,13) + 1;
    if(N(1) == 3)
        Hand(4:6) = Deck(7:9);
    elseif(N(1) == 2)
            Hand(3:6) = Deck(7:10);
    else
            Hand(2:6) = Deck(7:11);
    end
    Value = mod(Hand,13) + 1;
    N = zeros(1,13);
    for n=1:13
        N(n) = sum(Value == n);
    end
    N = sort(N, 'descend');
    if(N(1) == 4) Pair4 = Pair4 + 1; end
    end
disp('6-Card Draw: 4 of a kind ');
disp([Pair4])
toc
6-Card Draw: 4 of a kind
    6 6 9
    658
    6 8 9
Elapsed time is 12.823158 seconds.
```

