ECE 341 - Homework \#3

Dice Games and z-Transform - Summer 2023

Yahtzee (5 dice)

In the game of Yahtzee, you roll five dice.

- You can then keep whichever dice you like and re-roll the rest.
- You can then do this a second time.

Whatever the results are after three rolls scores points. A Yahtzee is when you roll 5-of-a-kind.

1) Compute the odds of rolling a full-house when rolling 5 dice one time
dice $=x x x y y$
x and y have different frequency, so do these separate (11122 is different from 22211)
$\mathrm{M}=(6 \mathrm{c} 1$ for x$)(5$ spots for x , choose 3$)(5 \mathrm{c} 1$ for y$)(2$ spots for y , choose 2)

$$
M=\binom{6}{1}\binom{5}{3}\binom{5}{1}\binom{2}{2}=300
$$

There are 150 ways to roll a full-house

$$
\begin{aligned}
& N=6^{5} \\
& p=\left(\frac{M}{N}\right)=3.848 \%
\end{aligned}
$$

2) Compute the odds of rolling four-of-a-kind when rolling 5 dice one time

$$
\text { dice }=\operatorname{xxxx} y
$$

$\mathrm{M}=(6$ numbers choose 1 for x$)(5$ spots choose 4 for x$)(5$ remaining nubers choose 1 for y$)(1$ spot for y$)$

$$
\begin{aligned}
& M=\binom{6}{1}\binom{5}{4}\binom{5}{1}\binom{1}{1}=150 \\
& p=\left(\frac{M}{N}\right)=1.929 \%
\end{aligned}
$$

3) Compute the odds of rolling three-of-a-kind when rolling 5 dice one time

$$
\text { dice }=x x x y z
$$

$M=(6$ numbers choose 1 for $x)(5$ spots for x, choose 3$)(5$ other numbers choose 2 for $x y)(2$ spots for y choose 1$)$

$$
\begin{aligned}
& M=\binom{6}{1}\binom{5}{3}\binom{5}{2}\binom{2}{1}=1200 \\
& M=\binom{6}{1}\binom{5}{3}\binom{5}{1}\binom{4}{1}=1200 \\
& p=\left(\frac{M}{N}\right)=15.432 \%
\end{aligned}
$$

4) Write a Matlab program which computes the number of ways to roll five dice and

- Get a full house
- Get 4-of-a-kind, and
- Get 3-of-a-kind

Compare your answers to what you computed using combinatorics
Code: Using enumeration (exact answer)

```
% Yahtzee
Pair4 = 0;
Pair3 = 0;
Pair32 = 0;
for d1=1:6
    for d2=1:6
            for d3=1:6
                for d4=1:6
                    for d5=1:6
                        Dice = [d1,d2,d3,d4,d5];
                N = zeros(1,6);
                for i=1:6
                    N(i) = sum(Dice == i);
                        end
                                N = sort(N, 'descend');
                        if(N(1) == 4) Pair4 = Pair4 + 1; end
                                if((N(1) == 3)*(N(2)==2)) Pair32 = Pair32 + 1; end
                                if((N(1) == 3)*(N(2)==1)) Pair3 = Pair3 + 1; end
                    end
                end
            end
    end
end
[Pair4, Pair32, Pair3]
```

Result:

ans $=$| 4 ok | FH | 3 OK |
| :---: | :---: | :---: |
| 150 | 300 | 1200 |

These match my calculations

z-Transforms

5) Find the inverse z-transform

$$
\begin{aligned}
& X=\left(\frac{0.01 z^{2}}{(z-0.98)(z-0.96)(z-0.9)}\right) \\
& X=\left(\frac{0.01 z}{(z-0.98)(z-0.96)(z-0.9)}\right) z \\
& X=\left(\left(\frac{6.125}{z-0.98}\right)+\left(\frac{-8}{z-0.96}\right)+\left(\frac{1.875}{z-0.9}\right)\right) z \\
& X=\left(\frac{6.125 z}{z-0.98}\right)+\left(\frac{-8 z}{z-0.96}\right)+\left(\frac{1.875 z}{z-0.9}\right) \\
& x(k)=6.125(0.98)^{k}-8(0.96)^{k}+1.875(0.9)^{k} \quad \quad \mathrm{k}>=0
\end{aligned}
$$

6) Find the inverse z-transform

$$
\begin{aligned}
& X=\left(\frac{0.1(z-0.9)}{(z-1)(z-0.95)(z-0.8)}\right) \\
& z X=\left(\frac{0.1(z-0.9)}{(z-1)(z-0.95)(z-0.8)}\right) z \\
& z X=\left(\left(\frac{1}{z-1}\right)+\left(\frac{-0.6667}{z-0.95}\right)+\left(\frac{-0.3333}{z-0.8}\right)\right) z \\
& z X=\left(\frac{z}{z-1}\right)+\left(\frac{-0.6667 z}{z-0.95}\right)+\left(\frac{-0.3333 z}{z-0.8}\right) \\
& z x(k)=\left(1-0.6667(0.95)^{k}-0.3333(0.8)^{k}\right) u(k) \\
& x(k)=\left(1-0.6667(0.95)^{k-1}-0.3333(0.8)^{k-1}\right) u(k-1)
\end{aligned}
$$

7) A new Ford $\mathbf{F 1 5 0}$-Lightning costs $\mathbf{\$ 7 2 , 3 1 4}$ from Cars.com. If you take out a $\mathbf{6 0}$-month loan at $\mathbf{4 . 7 4 \%}$ interest, what is your monthly payment? Solve using z-transforms.
Let $\mathrm{x}(\mathrm{k})$ be how much you owe the bank at month k

- Borrow \$L at month 0
- Monthly payments of p starting month \#1
- $\mathrm{a}=0.0474 / 12$ (monthly interest rate)

$$
x(k+1)=(1+a) x(k)+L \cdot \delta(k)+p \cdot u(k-1)
$$

Convert to z-transforms

$$
\begin{aligned}
& z X=(1+a) X+L+p\left(\frac{1}{z-1}\right) \\
& (z-(1+a)) X=L+p\left(\frac{1}{z-1}\right) \\
& X=\left(\frac{1}{z-(1+a)}\right) L+\left(\frac{1}{(z-1)(z-(1+a))}\right) p
\end{aligned}
$$

Take partial fraction expansion

$$
X=\left(\frac{1}{z-(1+a)}\right) L+\left(\left(\frac{-1 / a}{z-1}\right)+\left(\frac{1 / a}{z-(1+a)}\right)\right) p
$$

Take the inverse-z transform

$$
\begin{aligned}
& z X=\left(\frac{z}{z-(1+a)}\right) L+\left(\frac{1}{a}\right)\left(\left(\frac{-z}{z-1}\right)+\left(\frac{z}{z-(1+a)}\right)\right) p \\
& z x(k)=\left((1+a)^{k} \cdot L+\left(\frac{p}{a}\right)\left((1+a)^{k}-1\right)\right) u(k) \\
& x(k)=\left((1+a)^{k-1} \cdot L+\left(\frac{p}{a}\right)\left((1+a)^{k-1}-1\right)\right) u(k-1)
\end{aligned}
$$

At $\mathrm{k}=60$, the loan balance is zero

$$
\begin{aligned}
& x(60)=0=\left((1+a)^{59} \cdot L+\left(\frac{p}{a}\right)\left((1+a)^{59}-1\right)\right) \\
& p=\left(\frac{a(1+a)^{59}}{(1+a)^{59}-1}\right) L
\end{aligned}
$$

Plugging in numbers

```
>> a = 0.0474/12;
>> L = 72314;
>> p = a * (1+a)^59 / ( (1+a)^59 - 1) * L
p=1376.4
```

Your monthly payments will be $\$ 1376.4$

