ECE 341 - Homework \#5

Geometric \& Pascal Distributions. Summer 2023

Geometric Distributions

Let A be the number of times you roll an 8 -sided die until you get a $1(p=1 / 8)$

1) Determine the pdf of A using z-transforms. From this, compute

- The probabilty that $\mathrm{A}=10$
- The probability that $\mathrm{A}>=10$

$$
\begin{aligned}
& A=\left(\frac{1 / 8}{z-7 / 8}\right) \\
& z A=\left(\frac{z \cdot 1 / 8}{z-7 / 8}\right) \\
& z a(k)=\left(\frac{1}{8}\right)\left(\frac{7}{8}\right)^{k} u(k) \\
& a(k)=\left(\frac{1}{8}\right)\left(\frac{7}{8}\right)^{k-1} u(k-1)
\end{aligned}
$$

In Matlab

```
>> k=[1:200]';
> A = 1/8 * (7/8) .^ (k-1);
>> sum(A)
ans = 1.0000 it's a valid pdf: all probabilities add to one
>> A(10)
ans = 0.0376 p(A = 10)
>> sum(A(10:200))
ans = 0.3007
    p(A = 10+)
```

2) Use a Monte-Carlo simulation with 100,000 A's. From your Monte-Carlo simulation, determine

- The probability that $\mathrm{A}=10$
- The probability that $\mathrm{A}>=10$

With 100,000 trials

$$
\begin{aligned}
\mathrm{p}(\mathrm{~A}=10) & =3803 / 100,000 \\
= & 3.808 \% \quad \text { vs. } 3.76 \% \text { computed }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{p}(\mathrm{~A}>= & 10)=30337 / 100,000 \\
& =30.337 \% \quad \text { vs. } 30.07 \% \text { computed }
\end{aligned}
$$

Matlab Code

```
Result = zeros(200,1);
for n=1:1e5
    N = 1;
    while(rand > 1/8)
        N = N + 1;
    end
    Result(N) = Result(N) + 1;
end
Result(10)
ans = 3803
sum(Result(10:200))
ans = 30337
```


Pascal Distribution

Let

- A be the number of times you roll an 8 -sided die until you get a $1(p=1 / 8)$, and
- B be the number of times you roll an 8 -sided die until you get a 1 or $2(p=1 / 4)$.
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

3) Determine the pdf of X using z-transforms. From this comptue

- The probability that $\mathrm{X}=20$
- The probability that $\mathrm{X}>=20$

$$
\begin{aligned}
& A=\left(\frac{1 / 8}{z-7 / 8}\right) \\
& B=\left(\frac{1 / 4}{z-3 / 4}\right) \\
& X=A B=\left(\frac{1 / 8}{z-7 / 8}\right)\left(\frac{1 / 4}{z-3 / 4}\right) \\
& z X=\left(\frac{1 / 32}{(z-7 / 8)(z-3 / 4)}\right) z \\
& z X=\left(\left(\frac{0.25}{z-7 / 8}\right)+\left(\frac{-0.25}{z-3 / 4}\right)\right) z \\
& z X=\left(\frac{0.25 z}{z-7 / 8}\right)+\left(\frac{-0.25 z}{z-3 / 4}\right) \\
& z x(k)=\left(0.25\left(\frac{7}{8}\right)^{k}-0.25\left(\frac{3}{4}\right)^{k}\right) u(k) \\
& x(k)=\left(\frac{1}{4}\right)\left(\left(\frac{7}{8}\right)^{k-1}-\left(\frac{3}{4}\right)^{k-1}\right) u(k-1) \\
& \gg k=[1: 200]^{\prime} ; \\
& \gg x=1 / 4 *\left((7 / 8) .^{\wedge}(k-1)-(3 / 4) .^{\wedge}(k-1)\right) ; \\
& \gg x(20) \\
& \text { ans }=0.0187 \quad p(x==20) \\
& \gg \operatorname{sum}(x(20: 200)) \\
& \text { ans }=0.1540 \quad p(x>=20) \\
& \text { >> sum (x) } \\
& \text { ans }=1.0000 \quad \text { check: all probabilities add to one }
\end{aligned}
$$

4) Determine the pdf of X using convolution. From this, compute

- The probability that $X=20$
- The probability that $X>=20$

```
>> k = [0:200]';
>> A = 1/8 * (7/8).^(k-1) .* (k>0);
>> B = 1/4 * (3/4).^(k-1) .* (k>0);
>> X = conv(A,B);
>> X = X(1:201);
>> sum(X)
ans=1.0000
>> X(21)
ans = 0.0187 vs. 0.0187 from z-transforms
>> sum(X(21:201))
ans = 0.1540 vs. 0.1540 from z-transforms
>>
```

5) Use a Monte-Carlo simulation with 100,000 X's. From your Monte-Carlo simulation, determine

- The probability that $X=20$
- The probability that $X>=20$

```
Result = zeros(200,1);
for n=1:1e5
    A = 1;
    while(rand > 1/8)
        A = A + 1;
    end
    B = 1;
    while(rand > 1/4)
            B = B + 1;
    end
    X = A + B;
    Result(X) = Result(X) + 1;
end
Result(20) / 1e5
    ans = 0.01880 vs. 0.0187 computed
sum(Result(20:200)) / 1e5
ans = 0.15337 vs. 0.1540 computed
>>
```


Pascal Distribution (cont'd)

Let

- A be the number of times you roll a 8 -sided die until you roll a 1 ($p=1 / 8$)
- B be the number of times you roll a 8 -sided die until you get a 1 or $2(p=2 / 8)$
- C be the number of times you roll a 8 -sided die until you get a 1,2 , or $3(p=3 / 8)$
- $\mathrm{Y}=\mathrm{A}+\mathrm{B}+\mathrm{C}$

6) Determine the pdf of Y using z-transforms. From this comptue

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

$$
\begin{aligned}
& A=\left(\frac{1 / 8}{z-7 / 8}\right) \\
& B=\left(\frac{1 / 4}{z-3 / 4}\right) \\
& C=\left(\frac{3 / 8}{z-5 / 8}\right) \\
& Y=A B C=\left(\frac{1 / 8}{z-7 / 8}\right)\left(\frac{1 / 4}{z-3 / 4}\right)\left(\frac{3 / 8}{z-5 / 8}\right) \\
& z Y=\left(\frac{3 / 256}{(z-7 / 8)(z-3 / 4)(z-5 / 8)}\right) z \\
& z Y=\left(\left(\frac{0.375}{z-7 / 8}\right)+\left(\frac{-0.75}{z-3 / 4}\right)+\left(\frac{0.375}{z-5 / 8}\right)\right) z \\
& z Y=\left(\frac{0.375 z}{z-7 / 8}\right)+\left(\frac{-0.75 z}{z-3 / 4}\right)+\left(\frac{0.375 z}{z-5 / 8}\right) \\
& z y(k)=\left(0.375\left(\frac{7}{8}\right)^{k}-0.75\left(\frac{3}{4}\right)^{k}+0.375\left(\frac{5}{8}\right)^{k}\right) u(k) \\
& y(k)=\left(0.375\left(\frac{7}{8}\right)^{k-1}-0.75\left(\frac{3}{4}\right)^{k-1}+0.375\left(\frac{5}{8}\right)^{k-1}\right) u(k-1)
\end{aligned}
$$

>> k = [1:200]';

$$
\gg y=0.375 *(7 / 8) .^{\wedge}(k-1)-0.75 *(3 / 4) .^{\wedge}(k-1)+0.375 *(5 / 8) .^{\wedge}(k-1) ;
$$

>> sum (y)

$$
\text { ans }=1.0000
$$

>> y (20)

$$
\text { ans }=0.0265
$$

$$
\text { >> } \operatorname{sum}(y(20: 200))
$$

$$
\text { ans }=0.2247
$$

7) Determine the pdf of Y using convolution. From this, compute

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

```
>> k = [0:200]';
>> A = 1/8 * (7/8).^(k-1);
>> B = 1/4 * (3/4).^(k-1);
>> C = 3/8 * (5/8).^(k-1);
>> AB = conv(A,B);
>> ABC = conv(AB,C);
>> ABC = ABC(1:201);
>> sum(ABC)
ans = 1.0000
>> ABC(21)
ans = 0.0265 vs. 0.0265 computed
>> sum(ABC (21:200))
ans = 0.2247 vs 0.2247 computed
```

8) Use a Monte-Carlo simulation with 100,000 Y's. From your Monte-Carlo simulation, determine

- The probability that $\mathrm{Y}=20$
- The probability that $\mathrm{Y}>=20$

With 100,000 rolls,

20: 2668	$=2.668 \%$	vs. 2.65% computed
$20+$	22394	$=22.394 \%$
vs. 22.47% computed		

