## ECE 341 - Homework \#8

Gamma, Poisson, \& Normal Distributions. Summer 2023

## Gamma Distributions

Let A be an exponential distribution with a mean of 10 seconds
The time until the next customer arrives
Let B be the time until three customers arrive
$B$ has a gamma distribution

1) Determine the pdf for $B$ using LaPlace transforms.

- From your results, determine the pdf at $\mathrm{B}=20$

The moment generating function for the arrival time for one customer is

$$
A(s)=\left(\frac{1 / 10}{s+1 / 10}\right)
$$

The moment generating funciton for the arrival time for three customers is

$$
B(s)=\left(\frac{1 / 10}{s+1 / 10}\right)^{3}
$$

Using a table of LaPlace transforms

$$
\begin{aligned}
& t^{2} e^{-b t} u(t) \leftrightarrow\left(\frac{2}{(s+b)^{3}}\right) \\
& B(s)=\left(\frac{1}{2000}\right)\left(\frac{2}{(s+1 / 10)^{3}}\right) \\
& b(t)=\left(\frac{1}{2000}\right) t^{2} e^{-t / 10} u(t) \\
& b(20)=\left(\frac{1}{2000}\right)(20)^{2} e^{-2} \\
& b(20)=0.0271
\end{aligned}
$$

2) Determine the pdf of $B$ using convolution

- From your results, determine the pdf at $\mathrm{B}=20$

```
>> dt = 0.01;
>> t = [0:dt:100]';
>> A = 0.1 * exp(-t/10);
>> A2 = conv(A,A) * dt;
>> A3 = conv(A2,A) * dt;
>> B = A3(1:length(t));
>> t(2001)
ans = 20
>> B(2001)
```

ans $=0.0271$ matches problem \#1
>> plot( $t, B$ )


## Poisson Distributions

3) Determine the probability that 3 customers will arrive within 20 seconds $(0<t<20)$

Method \#1: Poisson pdf:

$$
\begin{aligned}
& f(k)=\left(\frac{\lambda^{k} e^{-\lambda}}{k!}\right) \\
& \lambda=n p=(20)\left(\frac{1}{10}\right)=2 \\
& f(k=3)=\left(\frac{1}{3!}\right)(2)^{3} e^{-2} \\
& f(k=3)=18.04 \%
\end{aligned}
$$

Method \#2: Integrate the pdf for a Gamma distribution.
The pdf for three customers arriving at t seconds is

$$
\left(\frac{1 / 10}{s+1 / 10}\right)^{3}
$$

The cdf is the integral of the pdf

$$
c d f=\left(\frac{1 / 10}{s+1 / 10}\right)^{3} \cdot\left(\frac{1}{s}\right)
$$

Doing a partial fraction expansion

$$
c d f=\left(\frac{1}{s}\right)+\left(\frac{A}{(s+1 / 10)^{3}}\right)+\left(\frac{B}{(s+1 / 10)^{2}}\right)+\left(\frac{C}{s+1 / 10}\right)
$$

Putting over a common denominator and solving for $\mathrm{A}, \mathrm{B}, \mathrm{C}$

$$
\begin{aligned}
& \left(s+\frac{1}{10}\right)^{3}+A s+B s\left(s+\frac{1}{10}\right)+C s\left(s+\frac{1}{10}\right)^{2}=\left(\frac{1}{1000}\right) \\
& \left(s^{3}+\frac{3}{10} s^{2}+\frac{3}{100} s+\frac{1}{1000}\right)+A s+B\left(s^{2}+\frac{1}{10} s\right)+C s\left(s^{2}+\frac{2}{10} s+\frac{1}{100}\right)=\left(\frac{1}{1000}\right) \\
& C=-1 \\
& B=\frac{-1}{10} \\
& A=\frac{-1}{100} \\
& C D F(s)=\left(\frac{1}{s}\right)+\left(\frac{-0.01}{(s+1 / 10)^{3}}\right)+\left(\frac{-0.1}{(s+1 / 10)^{2}}\right)+\left(\frac{-1}{s+1 / 10}\right) \\
& c d f(t)=\left(1+\left(\frac{-0.01}{2}\right) t^{2} e^{-t / 10}-0.1 t e^{-t / 10}-e^{-t / 10}\right) u(t) \\
& c d f(t)=\left(1-\left(\left(\frac{0.01}{2}\right) t^{2}+0.1 t+1\right) e^{-t / 10}\right) u(t) \\
& c d f(20)=1-5 e^{-2}
\end{aligned}
$$

$$
c d f(20)=0.3233
$$

Using convolution and numerical integration

```
>>dt = 0.01;
>> t = [0:dt:100]';
>> A = 0.1 * exp(-t/10);
>> A2 = conv(A,A) * dt;
>> A3 = conv(A2,A) * dt;
>> B = A3(1:length(t));
>> sum(B(1:2001)) * dt
ans = 0.3244
```

which is close to the exact answer from the moment-generating funciton

$$
\operatorname{cdf}(20)=0.323324
$$

A smaller step size or extending time out to 200 would give a more-exact answer
4) In $D \& D$, you automatically make your saving throw if you roll a 20 on a 20 -sided die ( $p=5 \%$ ).

- Using a binomial pdf, determine the probability of making your saving throw four times in 20 rolls
- Using a Poisson approximation, determine the probability of making four saving throws in 20 rolls

Binomial

$$
\begin{aligned}
& p=\binom{20}{4}\left(\frac{1}{20}\right)^{4}\left(\frac{19}{20}\right)^{16} \\
& p=0.013328
\end{aligned}
$$

Poisson

$$
\begin{aligned}
& \lambda=n p=20 \cdot\left(\frac{1}{20}\right)=1 \\
& f(x)=\frac{1}{x!} \cdot \lambda^{x} e^{-\lambda} \\
& f(4)=\frac{1}{4!} \cdot(1)^{4} \cdot e^{-1} \\
& f(4)=0.015328
\end{aligned}
$$

## Normal Distribution

- Let $x$ be a random number from a normal distribution with a mean of 10 and a standard deviation of 6
- Let y be a random number from a normal distribution with a mean of 15 and a standard deviation of 8
- Let $z$ be a random number from a normal distribution with a mean of 20 and a standard deviation of 10

5) Let $\mathrm{F}=\mathrm{x}+\mathrm{y}$. Determine the probability that $\mathrm{F}>40$

- a) Using a z-score
- b) Using a Monte-Carlo simulation with 100,000 samples of F
z-Score: Normal + Normal = Normal
- means add
- variances add

$$
\begin{aligned}
& \mu_{f}=\mu_{x}+\mu_{y} \\
& \mu_{f}=10+15=25 \\
& \sigma_{f}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2} \\
& \sigma_{f}^{2}=6^{2}+8^{2}=100 \\
& \sigma_{f}=10
\end{aligned}
$$

The z-score is the distance to the mean in terms of stanard deviations

$$
z=\left(\frac{40-25}{10}\right)=1.50
$$

From StatTrek, a z-score of 1.50 corresponds to a tail with an area of 0.06681
There is a $\mathbf{6 . 6 8 1 \%}$ chance that $\mathrm{F}>40$

```
Monte-Carlo Simulation
W = 0;
for \(n=1: 1 e 6\)
    A = randn*6 + 10;
    \(B=\) randn* \(8+15\);
    \(\mathrm{F}=\mathrm{A}+\mathrm{B}\);
    if( \(\mathrm{F}>40\) )
        \(\mathrm{W}=\mathrm{W}+1\);
    end
end
W / 1e6
ans \(=0.0670\) about the same answer
```

6) Let $\mathrm{G}=\mathrm{x}+\mathrm{y}+\mathrm{z}$. Determine the probability that $\mathrm{G}>60$

- a) Using a z-score
- b) Using a Monte-Carlo simulation with 100,000 samples of G

$$
\begin{aligned}
& \mu_{g}=\mu_{x}+\mu_{y}+\mu_{z} \\
& \mu_{g}=10+15+20 \\
& \mu_{g}=45 \\
& \sigma_{g}^{2}=\sigma_{x}^{2}+\sigma_{y}^{2}+\sigma_{z}^{2} \\
& \sigma_{g}^{2}=6^{2}+8^{2}+10^{2} \\
& \sigma_{g}^{2}=200 \\
& \sigma_{g}=14.1421
\end{aligned}
$$

The z -score for 60.5 is

$$
z=\left(\frac{60-45}{14.1421}\right)=1.0607
$$

From a normal distribution table, this corresponds to $\mathrm{p}=0.8554$ ( $1-\mathrm{p}=0.1446$ )

## There is a $\mathbf{1 4 . 4 6 \%}$ chance of the sum being more than 60

Monte-Carlo with 1 million rolls

```
W = 0;
for n=1:1e6
    A = randn*6 + 10;
    B = randn*8 + 15;
    C = randn*10 + 20;
    G = A + B + C;
    if(G > 60)
        W = W + 1;
    end
end
W / le6
    ans = 0.1444
```

There is a $\mathbf{1 4 . 4 4 \%}$ chance of rolling more than 60

