ECE 341 - Homework \#9

Weibull Distribution, Central Limit Theorem. Summer 2023

Weibull Distribution

1) Determine and plot the cdf for the voltage, Y , in homework set \#7 problem \#3

Homework \#7, problem \#3. Find the pdf for the voltage at Y. All resistors are 5\% tolerance
Matlab Code

```
result = [];
for i=1:10000
    R1 = (1 + 0.05*(2*rand-1)) * 1000;
    R2 = (1 + 0.05*(2*rand-1)) * 3000;
    R3 = (1 + 0.05*(2*rand-1)) * 1000;
    R4 = (1 + 0.05*(2*rand-1)) * 4000;
    Y = -(R2/R1) * (1 + R4/R3) * 2;
    result = [result ; Y];
end
result = sort(result);
p = [1:length(result)]';
p = p / length(result);
plot(result,p);
```


2) Determine and plot the pdf for this voltage using a Weibull approximation for the cdf

Save the data in a file

```
>> Volts = result;
>> save HW7 Volts p
```

Write an m -file to compare the data to a Weibull distribution

```
function y = Weibull(z)
% Weibull distribution curve fit
    k = z(1);
    L = z(2);
    load HW7
    x = Volts;
X0 = min(x);
% p(Vce) = target
    W}=1-\operatorname{exp}(-(((x-X0)/L) .^ k ) )
    e = p - W;
    plot(Volts,p,'b',Volts,W,'r');
    pause(0.01);
    y = sum(e.^2);
end
```

Try a couple of guesses for k and lambda:

```
>> Weibull([1,2])
ans=1.9566e+003
```


Use fminsearch to do better
>> [Z,e] = fminsearch('Weibull', [1,2])

	k	lambda
$\mathrm{Z}=$	3.5479	5.5610
$\mathrm{e}=$	0.0652	

cdf for y (blue) and Weibull approximation (red)

So, the cdf is approximately

$$
F(x) \approx\left(1-\exp \left(-\left(\frac{x}{5.5610}\right)^{3.5479}\right)\right)
$$

The pdf is

$$
f(x) \approx \frac{k}{\lambda}\left(\frac{x}{\lambda}\right)^{k-1} \exp \left(-\left(\frac{x}{\lambda}\right)^{k}\right) u(k)
$$

Shifting by x 0

$$
f\left(x-x_{0}\right) \approx\left(\frac{3.5479}{5.5610}\right)\left(\frac{x}{5.5610}\right)^{2.5479} \exp \left(-\left(\frac{x}{5.5610}\right)^{3.5479}\right) u\left(x-x_{0}\right)
$$

Plotting this in Matlab

```
>> k = Z(1);
>> L = Z(2);
>> x0 = min(Volts)
x0 = -35.0635
>> x = [0:0.01:10]';
>> pdf = (k/L) * (x/L).^(k-1) .* exp(-(x/L).^k);
>> cdf = 1 - exp(-(x/L).^k);
>> plot(x+x0,pdf,'b',x+x0,cdf,'r')
>> xlabel('Volts');
```


pdf (blue) and cdf (red) for the votlage at Y

Central Limit Theorem

The mean and standard deviation for a 4,6 , and 8 -sided die are

Die	d 4	d 6	d 8
mean	2.5	3.5	4.5
standard deviation	1.1180	1.7078	2.2191
variance	1.2500	2.9166	5.2487

5) Let Y be the sum of rolling six 6 -sided dice (homework \#4 problem 4):

$$
Y=6 d 6
$$

a) What is the mean and standard deviation of Y ?

The mean and variance add

$$
\begin{aligned}
& \mu_{y}=6 \cdot 3.5=21 \\
& \sigma_{y}^{2}=6 \cdot 2.9166=17.4996 \\
& \sigma_{y}=\sqrt{17.4996}=4.1833
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

The z-score for 5% tails is 1.64485
The 90% confidence interval is

$$
\mu-1.64485 \sigma<\text { roll }<\mu+1.64485 \sigma
$$

$14.1192<$ roll <27.8808

90% confidence interval for the sum of 6 d 6 (Normal approximation)
c) Using a normal approximation, what is the probability that the sum the dice will be more than 29.5 ?

Find the z -score

$$
z=\left(\frac{29.5-\mu}{\sigma}\right)=\left(\frac{29.5-21}{4.1833}\right)=2.0319
$$

From StatTrek, this corresponds to a probability of 2.108%

d) Compare these results to the actual odds (from homework \#4)

From homework \#4, the actual odds are 1.94\%

- found using convolution

6) Let Y be the sum of rolling twelve 6 -sided dice (homework \#4 problem 5):

$$
\mathrm{Y}=12 \mathrm{~d} 6
$$

a) What is the mean and standard deviation of Y?

$$
\begin{aligned}
& \mu=12 \cdot 3.5=42 \\
& \sigma^{2}=12 \cdot 2.9166=34.9992 \\
& \sigma=5.9160
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

$$
\begin{aligned}
& \mu-1.64485 \sigma<\text { roll }<\mu+1.64485 \sigma \\
& 32.2690<\text { roll }<51.7310
\end{aligned}
$$

Normal Approximation for the sum of 12 d 6 \& 90% Confidence Interval
c) Using a normal approximation, what is the probability that the sum the dice will be more than 49.5 ?

Find the z-score

$$
z=\left(\frac{49.5-\mu}{\sigma}\right)=\left(\frac{49.5-42}{5.9160}\right)=1.2170
$$

From StatTrek, this corresponds to a tail area of $\mathbf{1 1 . 1 8 \%}$
d) Compare these results to the actual odds (from homework \#4)

Area $=10.36 \%$
found using convolution
7) Let Y be the sum of rolling $2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8$ (homework \#4 problem 6)

$$
\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8
$$

a) What is the mean and standard deviation of Y ?

The means and variances add

$$
\begin{aligned}
& \mu=2 \cdot 2.5+3 \cdot 3.5+4 \cdot 4.5 \\
& \mu=33.50 \quad \text { mean } \\
& \sigma^{2}=2 \cdot 1.25+3 \cdot 2.9166+4 \cdot 5.2487 \\
& \sigma^{2}=32.2446 \\
& \sigma=5.6784 \quad \text { standard deviation }
\end{aligned}
$$

b) Using a normal approximation, what is the 90% confidence interval for Y ?

$$
\mu-1.64485 \sigma<\text { roll }<\mu+1.64485 \sigma
$$

$$
24.1598<\text { roll }<42.8402
$$

c) Using a normal approximation, what is the probability that the sum the dice will be more than 39.5 ?

Compute the z -score

$$
z=\left(\frac{39.5-\mu}{\sigma}\right)=\left(\frac{39.5-33.5}{5.6784}\right)=1.05663
$$

From a standard normal table, this corresponds to a probability of $\mathbf{1 4 . 8 3 7 \%}$

Normal approximation for Y. Area to the right of $3.9=p$ (rolling 40 or more) (approx)
d) Compare these results to the actual odds (from homework \#4)

Actual probability $=\mathbf{1 4 . 8 4 \%}$ (from convolution)

