ECE 341 - Homework \#11

Markov Chains. Summer 2023

Markov Chains

Four people are playing a game of hot potato. Each second, a player can keep the potato or pass it to another player. The probability of each decision are as follows:

1) Assume player A starts with the potato. Determine the probability that each player has the potato after 10 tosses using matrix multiplication.

2) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using z-transforms.

- What is the probability that player A has the potato after infinite tosses?
>> $A=M$

0.3000	0	0	0.5000
0.2000	0.4000	0	0
0.5000	0.3000	0.6000	0
0	0.3000	0.4000	0.5000

>> $\mathrm{XO}=[1 ; 0 ; 0 ; 0]$
1
0
0
0
$>C=[1,0,0,0]$
$\begin{array}{llll}1 & 0 & 0 & 0\end{array}$
$\gg D=0 ;$
>> $G=s s(A, X 0, C, D, 1) ;$
>> zpk(G)
$(z-0.5)(z-0.6)(z-0.4)$
$(z-1) \quad(z-0.3532) \quad\left(z^{\wedge} 2-0.4468 z+0.2322\right)$

Sampling time (seconds): 1

Multiply by z to get the z-transform for $\mathrm{A}(\mathrm{z})$

$$
A(z)=\left(\frac{(z-0.4)(z-0.5)(z-0.6) z}{(z-1)(z-0.3532)\left(z^{2}-0.4468 z+0.2322\right)}\right)
$$

Do a partial fraction expansion

$$
A(z)=\left(\left(\frac{0.2362}{z-1}\right)+\left(\frac{0.0132}{z-0.3532}\right)+\left(\frac{0.3963 \angle-18.71^{0}}{z-0.4819 \angle 62.376^{0}}\right)+\left(\frac{0.3969 \angle+18.71^{0}}{z-0.4819 \angle-62.376^{0}}\right)\right) z
$$

Convert back to k

$$
a(k)=0.2362+0.0132(0.3532)^{k}+0.7925(0.4819)^{k} \cos \left(62.376 k^{0}+18.71^{0}\right)
$$

3) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using eigenvalues and eigenvectors.
ate-transistion matrix:
```
>> A
\begin{tabular}{rrrr}
0.3000 & 0 & 0 & 0.5000 \\
0.2000 & 0.4000 & 0 & 0 \\
0.5000 & 0.3000 & 0.6000 & 0 \\
0 & 0.3000 & 0.4000 & 0.5000
\end{tabular}
```

Find the eigenvalues $\&$ eigenvectors. The one we care about is the eigenvector associated with the eigenvalue at $\mathrm{z}=+1$ (show in red)

```
>> [M,V] = eig(A)
M =
    -0.4335
    -0.1445
    -0.650
    -0.606
    0.1024 + 0.2476i 0.1024 - 0.2476i 0.7895
    -0.1849
    0.4218 + 0.2809i 0.4218-0.2809i -0.5849
    0.0948 - 0.5285i 0.0948 + 0.5285i -0.0197
eigenvalues
    1.0000 0.2234 + 0.4269i 0.2234 - 0.4269i 0.3532
```

A starts with the potato

```
>> X0 = [1;0;0;0];
```

which gives you the following initial conditions

```
>> IC = inv (M)*X0
-0.5449 - 0.0000i
\(-0.6063-0.2054 i\)
\(-0.6063+0.2054 i\)
\(-0.0713+0.0000 i\)
```

so $X(k)$ is

$$
\begin{aligned}
x(k)= & -0.5449\left[\begin{array}{l}
-0.4335 \\
-0.1445 \\
-0.6503 \\
-0.6069
\end{array}\right](1)^{k}+(0.2234+j 0.4269)\left[\begin{array}{c}
-0.6190 \\
-0.1024+j 0.2476 \\
0.4218+j 0.2809 \\
0.0948-j 0.5285
\end{array}\right](0.2234+j 0.4269)^{k} \\
& +(-0.6063+j 0.2054)\left[\begin{array}{c}
-0.6190 \\
0.1024-j 0.2476 \\
0.4218-j 0.2809 \\
0.0948+j 0.5285
\end{array}\right](0.2234-j 0.4269)^{k} \\
& +0.3432\left[\begin{array}{c}
-0.1849 \\
0.7895 \\
-0.5849 \\
-0.1987
\end{array}\right](0.3532)^{k}
\end{aligned}
$$

If you multiply the eigenvector by the scalar out front you get an equivalent answer

```
>> a = IC(1);
>> b = IC(2);
>> c = IC(3);
>> d = IC(4);
>> [a*M(:,1), b*M(:,2), C*M(:,3), d*M(:,4)]
ans =
    0.2362 + 0.0000i 0.3753 + 0.1272i 0.3753 - 0.1272i 0.0132 - 0.0000i
    0.0787 + 0.0000i -0.0112 - 0.1712i -0.0112 + 0.1712i -0.0563 + 0.0000i
    0.3543 + 0.0000i -0.1980 - 0.2570i -0.1980 + 0.2570i 0.0417 - 0.0000i
    0.3307 + 0.0000i -0.1661 + 0.3010i -0.1661 - 0.3010i 0.0014 - 0.0000i
```

eigenvalues

```
>> 1.0000
0.2234 + 0.4269i
0.2234-0.4269i 0.3532
```

meaning

$$
\begin{aligned}
X(k)= & {\left[\begin{array}{l}
0.2362 \\
0.0787 \\
0.3543 \\
0.3307
\end{array}\right](1)^{k}+\left[\begin{array}{c}
0.3753+j 0.1272 \\
-0.0112+j 0.1712 \\
-0.1980-j 0.2570 \\
-0.1661+j 0.3010
\end{array}\right](0.2234+j 0.4269)^{k} } \\
& +\left[\begin{array}{c}
0.3753-j 0.1272 \\
-0.0112-j 0.1712 \\
-0.1980+j 0.2570 \\
-0.1661-j 0.3010
\end{array}\right](0.2234-j 0.4269)^{k}+\left[\begin{array}{c}
0.0132 \\
-0.0563 \\
0.0417 \\
0.0014
\end{array}\right](0.3532)^{k}
\end{aligned}
$$

Markov Chains with Absorbing States

Problem 4 \& 5: Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 60% chance of winning
- There is a 15% chance of a tie, and
- Team B has a 25% chance of winning

In order to win the match, a team must be up by 2 games.
4) Determine the probabilty that team A wins the match after k games for $\mathrm{k}=\{0 \ldots 10\}$ using matrix multiplication.
relationship between the points after one game is:

$$
\left[\begin{array}{c}
P 2(k+1) \\
P 1(k+1) \\
P 0(k+1) \\
M 1(k+1) \\
M 2(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0 & 0.15 & 0.6 & 0 & 0 \\
0 & 0.25 & 0.15 & 0.6 & 0 \\
0 & 0 & 0.25 & 0.15 & 0 \\
0 & 0 & 0 & 0.25 & 1
\end{array}\right]\left[\begin{array}{c}
P 2(k) \\
P 1(k) \\
P 0(k) \\
M 1(k) \\
M 2(k)
\end{array}\right]
$$

Using Matlab and matrix multiplication:

```
>> A = [1,0.6,0,0,0 ; 0,0.15,0.6,0,0 ; 0,0.25,0.15,0.6,0 ; 0,0,0.25,0.15,0 ;
0,0,0,0.25,1]
\begin{tabular}{rrrrr}
1.0000 & 0.6000 & 0 & 0 & 0 \\
0 & 0.1500 & 0.6000 & 0 & 0 \\
0 & 0.2500 & 0.1500 & 0.6000 & 0 \\
0 & 0 & 0.2500 & 0.1500 & 0 \\
0 & 0 & 0 & 0.2500 & 1.0000
\end{tabular}
>> X0 = [0;0;1;0;0]
        0
        0
        1
        0
C = [1,0,0,0,0];
for n=0:10
    y = C * A^n * X0;
    disp([n,y]);
    end
    0
    1 0
    2 0.3600
    3 0.4680
    4 0.6003
    5 0.6700
    6 0.7276
    7 0.7642
    8 0.7912
    9 0.8094
    10 0.8224
```

5) Determine the z-transform for the probability that A wins the match after k games

- From the z transforms, determine the explicit function for $\mathrm{p}(\mathrm{A})$ wins after game k .

```
>> G = ss(A, X0, C, 0, 1);
>> zpk(G)
0.36 (z-0.15)
(z-1) (z-0.6977) (z+0.3977) (z-0.15)
```

meaning

$$
A(z)=\left(\frac{0.36 z(z-0.15)}{(z-1)(z-0.6977)(z+0.3977)(z-0.15)}\right)
$$

Do a partial fraction expansion

$$
A(z)=\left(\left(\frac{0.8521}{z-1}\right)+\left(\frac{-1.0872}{z-0.6977}\right)+\left(\frac{0.2351}{z-0.3977}\right)+\left(\frac{0}{z-0.15}\right)\right) z
$$

Take the inverse z-transform

$$
a(k)=\left(0.8521-1.0872(0.6977)^{k}+0.2351(-0.3977)^{k}\right) u(k)
$$

Comparing the two answers

```
for k=0:10
    y = C * A^k * X0;
    a = 0.8521 - 1.0872* (0.6977)^k + 0.2351*(-0.3977)^k;
    disp([k,y,a]);
    end
\begin{tabular}{rrr}
k & prob 4 & prob 5 \\
00 & 0 & 0.0000 \\
1.0000 & 0 & 0.0001 \\
2.0000 & 0.3600 & 0.3601 \\
3.0000 & 0.4680 & 0.4681 \\
4.0000 & 0.6003 & 0.6004 \\
5.0000 & 0.6700 & 0.6700 \\
6.0000 & 0.7276 & 0.7276 \\
7.0000 & 0.7642 & 0.7642 \\
8.0000 & 0.7912 & 0.7912 \\
9.0000 & 0.8094 & 0.8094 \\
10.0000 & 0.8224 & 0.8224
\end{tabular}
```

Problem 6: Two players are playing a game of tennis. To win a game, a player must win 3 points and be up by 2 points.

- If player A reaches 3 points and player B has less than 2 points, the game is over and player A wins.
- If player A reaches 2 points and player B has 2 points, then the game reverts to 'win by 2 ' rules. Both players keep playing until one of them is up by 2 games.

Supppose:

- Player A has a 60% chance of winning any given point
- Player B has a 40% chance of winning any given point.

What is the probabilty that player A wins the game (first to 4 games, win by 2)?

- Note: This is a combination of a binomial distribution (A has 4 points while B has 0,1 , or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

This is a conditional probability. The ways A can win is
A wins 3-0 binomial distribution
A wins 3-1 binomial distribution
A wins a tie-breaker after going 2-2
From a binomial distribution, the odds are:
3-0:

$$
p=\binom{3}{3}(0.6)^{3}(0.4)^{0}=0.2160
$$

3-1 = A wins after going 2-1

$$
p=0.6 \cdot\binom{3}{2}(0.6)^{2}(0.4)^{1}=0.2592
$$

2-2

$$
p=\binom{4}{2}(0.6)^{2}(0.4)^{2}=0.3456
$$

If you are at 2-2, it's now a Markov chain where you have to win by two. The state-transistion matrix is

$$
\left[\begin{array}{c}
P 2(k+1) \\
P 1(k+1) \\
P 0(k+1) \\
M 1(k+1) \\
M 2(k+1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0.4 & 0 & 0.6 & 0 \\
0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 1
\end{array}\right]\left[\begin{array}{c}
P 2(k) \\
P 1(k) \\
P 0(k) \\
M 1(k) \\
M 2(k)
\end{array}\right]
$$

The probability that A wins given you start at 2-2 is

```
>> A = [1,0.6,0,0,0 ; 0,0,0.6,0,0 ; 0,0.4,0,0.6,0 ; 0,0,0.4,0,0 ; 0,0,0,0.4,1]
    1.0000
        0-.60
        0 0.4000
        0}0.4
        0 0
路
                O
        0,0;1;0;0]
        0
        0
        1
        0
>> A^100 * X0
        0.6923
        0
        0.0000
        0.3077
```

The total odds are then a conditional probability

$$
\begin{aligned}
& p(A)=p(A \mid 3-0) p(3-0)+p(A \mid 3-1) p(3-1)+p(A \mid 2-2) p(2-2) \\
& p(A)=1 \cdot 0.2160+1 \cdot 0.2592+0.6923 \cdot 0.3456 \\
& p(A)=0.7145
\end{aligned}
$$

With this format, player A has a $\mathbf{7 1 . 4 5 \%}$ chance of winning any given match

