ECE 341 - Homework #11

Markov Chains. Summer 2023

Markov Chains

Four people are playing a game of hot potato. Each second, a player can keep the potato or pass it to another player. The probability of each decision are as follows:

1) Assume player A starts with the potato. Determine the probability that each player has the potato after 10 tosses using matrix multiplication.

sses using matrix in					
$\begin{bmatrix} A(k+1) \\ B(k+1) \\ C(k+1) \end{bmatrix} =$	0.3 0	0 0.5	A(k)		
B(k+1)	0.2 0.4	0 0	B(k)		
$ C(k+1) ^{=}$	0.5 0.3	0.6 0	C(k)		
D(k+1)	0 0.3	0.4 0.5	D(k)		
	_		; 0.5,0.3,0.6,0 ; 0,0.3,0.4,0.5]		
	0	0	0.5000		
0.2000	0.4000 0.3000	0 0 6000	0		
0		0.4000	0.5000		
>> X0 = [1;0;	0;0]				
1 0					
0					
>> M^10 * X0					
A(10)0.23B(10)0.07C(10)0.35D(10)0.33	85 40				

2) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using z-transforms.

• What is the probability that player A has the potato after infinite tosses? >> A = M

>> X0 = [1;0;0;0]1 0 0 0 >> C = [1, 0, 0, 0]1 0 0 0 >> D = 0;>> G = ss(A, X0, C, D, 1);>> zpk(G) (z-0.5) (z-0.6) (z-0.4)_____ _____ (z-1) (z-0.3532) $(z^2 - 0.4468z + 0.2322)$ Sampling time (seconds): 1

Multiply by z to get the z-transform for A(z)

$$A(z) = \left(\frac{(z-0.4)(z-0.5)(z-0.6)z}{(z-1)(z-0.3532)(z^2-0.4468z+0.2322)}\right)$$

Do a partial fraction expansion

$$A(z) = \left(\left(\frac{0.2362}{z-1} \right) + \left(\frac{0.0132}{z-0.3532} \right) + \left(\frac{0.3963 \angle -18.71^{\circ}}{z-0.4819 \angle 62.376^{\circ}} \right) + \left(\frac{0.3969 \angle +18.71^{\circ}}{z-0.4819 \angle -62.376^{\circ}} \right) \right) z$$

Convert back to k

$$a(k) = 0.2362 + 0.0132(0.3532)^{k} + 0.7925(0.4819)^{k} \cos(62.376k^{0} + 18.71^{0})$$

3) Assume player A starts with the potato. Determine the probability that player A has the potato after k tosses using eigenvalues and eigenvectors.

ate-transistion matrix:

>> A			
0.300	0 0	0	0.5000
0.200	0.4000	0	0
0.500	0.3000	0.6000	0
	0 0.3000	0.4000	0.5000

Find the eigenvalues & eigenvectors. The one we care about is the eigenvector associated with the eigenvalue at z = +1 (show in red)

>> [M,V] = eig(A)			
M =			
-0.4335 -0.1445 -0.6503 -0.6069	-0.6190 0.1024 + 0.2476i 0.4218 + 0.2809i 0.0948 - 0.5285i	-0.6190 0.1024 - 0.2476i 0.4218 - 0.2809i 0.0948 + 0.5285i	-0.1849 0.7895 -0.5849 -0.0197
eigenvalues 1.0000	0.2234 + 0.4269i	0.2234 - 0.4269i	0.3532

A starts with the potato

>> X0 = [1;0;0;0];

which gives you the following initial conditions

```
>> IC = inv(M)*X0
    -0.5449 - 0.0000i
    -0.6063 - 0.2054i
    -0.6063 + 0.2054i
    -0.0713 + 0.0000i
```

so X(k) is

$$x(k) = -0.5449 \begin{bmatrix} -0.4335 \\ -0.1445 \\ -0.6503 \\ -0.6069 \end{bmatrix} (1)^{k} + (0.2234 + j0.4269) \begin{bmatrix} -0.6190 \\ -0.1024 + j0.2476 \\ 0.4218 + j0.2809 \\ 0.0948 - j0.5285 \end{bmatrix} (0.2234 + j0.4269)^{k}$$
$$+ (-0.6063 + j0.2054) \begin{bmatrix} -0.6190 \\ 0.1024 - j0.2476 \\ 0.4218 - j0.2809 \\ 0.0948 + j0.5285 \end{bmatrix} (0.2234 - j0.4269)^{k}$$
$$+ 0.3432 \begin{bmatrix} -0.1849 \\ 0.7895 \\ -0.5849 \\ -0.1987 \end{bmatrix} (0.3532)^{k}$$

If you multiply the eigenvector by the scalar out front you get an equivalent answer

eigenvalues

>> 1.0000 0.2234 + 0.4269i 0.2234 - 0.4269i 0.3532

meaning

$$X(k) = \begin{bmatrix} 0.2362\\ 0.0787\\ 0.3543\\ 0.3307 \end{bmatrix} (1)^{k} + \begin{bmatrix} 0.3753 + j0.1272\\ -0.0112 + j0.1712\\ -0.1980 - j0.2570\\ -0.1661 + j0.3010 \end{bmatrix} (0.2234 + j0.4269)^{k} + \begin{bmatrix} 0.0132\\ -0.0132\\ -0.0563\\ 0.0417\\ 0.0014 \end{bmatrix} (0.3532)^{k}$$

Markov Chains with Absorbing States

Problem 4 & 5: Two teams, A and B, are playing a match made up of N games. For each game

- Team A has a 60% chance of winning
- There is a 15% chance of a tie, and
- Team B has a 25% chance of winning

In order to win the match, a team must be up by 2 games.

4) Determine the probability that team A wins the match after k games for $k = \{0 ... 10\}$ using matrix multiplication.

relationship between the points after one game is:

P2(k+1)		1	0.6	0	0	0	$\int P2(k)$
P1(k+1)		0	0.15	0.6	0	0	<i>P</i> 1(<i>k</i>)
P0(k+1)	=	0	0.25	0.15	0.6	0	P0(k)
M1(k+1)		0	0	0.25	0.15	0	<i>M</i> 1(<i>k</i>)
M2(k+1)		0	0	0	0.25	1	M2(k)

Using Matlab and matrix multiplication:

>> A = [1,0.6,0,0,0 ; 0,0.15,0.6,0,0 ; 0,0.25,0.15,0.6,0 ; 0,0,0.25,0.15,0 ; 0,0,0,0.25,1]

1.0000	0.6000	0	0	0
0	0.1500	0.6000	0	0
0	0.2500	0.1500	0.6000	0
0	0	0.2500	0.1500	0
0	0	0	0.2500	1.0000

```
>> X0 = [0;0;1;0;0]
0
0
```

```
1
      0
      0
C = [1, 0, 0, 0, 0];
for n=0:10
   y = C * A^n * X0;
   disp([n,y]);
   end
    0
           0
    1
           0
    2
          0.3600
    3
          0.4680
          0.6003
    4
    5
          0.6700
    6
          0.7276
    7
          0.7642
    8
          0.7912
```

0.8094

0.8224

9

10

- 5) Determine the z-transform for the probability that A wins the match after k games
 - From the z transforms, determine the explicit function for p(A) wins after game k.

meaning

$$A(z) = \left(\frac{0.36z(z-0.15)}{(z-1)(z-0.6977)(z+0.3977)(z-0.15)}\right)$$

Do a partial fraction expansion

$$A(z) = \left(\left(\frac{0.8521}{z-1} \right) + \left(\frac{-1.0872}{z-0.6977} \right) + \left(\frac{0.2351}{z-0.3977} \right) + \left(\frac{0}{z-0.15} \right) \right) z$$

Take the inverse z-transform

$$a(k) = \left(0.8521 - 1.0872(0.6977)^{k} + 0.2351(-0.3977)^{k}\right)u(k)$$

Comparing the two answers

for k=0:10
 y = C * A^k * X0;
 a = 0.8521 - 1.0872*(0.6977)^k + 0.2351*(-0.3977)^k;
 disp([k,y,a]);
 end

k	prob 4	prob 5
0	0	0.0000
1.0000	0	0.0001
2.0000	0.3600	0.3601
3.0000	0.4680	0.4681
4.0000	0.6003	0.6004
5.0000	0.6700	0.6700
6.0000	0.7276	0.7276
7.0000	0.7642	0.7642
8.0000	0.7912	0.7912
9.0000	0.8094	0.8094
10.0000	0.8224	0.8224

Problem 6: Two players are playing a game of tennis. To win a game, a player must win 3 points *and* be up by 2 points.

- If player A reaches 3 points and player B has less than 2 points, the game is over and player A wins.
- If player A reaches 2 points and player B has 2 points, then the game reverts to 'win by 2' rules. Both players keep playing until one of them is up by 2 games.

Suppose:

- Player A has a 60% chance of winning any given point
- Player B has a 40% chance of winning any given point.

What is the probability that player A wins the game (first to 4 games, win by 2)?

• Note: This is a combination of a binomial distribution (A has 4 points while B has 0, 1, or 2 points) along with a Markov chain (A and B both have 3 points, at which point it becomes a win-by-2 series)

This is a conditional probability. The ways A can win is

A wins 3-0 binomial distribution

A wins 3-1 binomial distribution

A wins a tie-breaker after going 2-2

From a binomial distribution, the odds are:

3-0:

$$p = \begin{pmatrix} 3 \\ 3 \end{pmatrix} (0.6)^3 (0.4)^0 = 0.2160$$

3-1 = A wins after going 2-1

$$p = 0.6 \cdot \begin{pmatrix} 3 \\ 2 \end{pmatrix} (0.6)^2 (0.4)^1 = 0.2592$$

2-2

$$p = \begin{pmatrix} 4 \\ 2 \end{pmatrix} (0.6)^2 (0.4)^2 = 0.3456$$

If you are at 2-2, it's now a Markov chain where you have to win by two. The state-transistion matrix is

The probability that A wins given you start at 2-2 is

>> A = [1,0.6,0,0,0 ; 0,0,0.6,0,0 ; 0,0.4,0,0.6,0 ; 0,0,0.4,0,0 ; 0,0,0,0.4,1] 1.0000 0.6000 0 0 0 0.6000 0 0 0 0 0 0.6000 0 0.4000 0 0 0.4000 0 0 0 0 0 0 0.4000 1.0000 >> X0 = [0;0;1;0;0]0 0 1 0 0 >> A^100 * X0 0.6923 0 0.0000 0 0.3077

The total odds are then a conditional probability

$$p(A) = p(A|3-0)p(3-0) + p(A|3-1)p(3-1) + p(A|2-2)p(2-2)$$

$$p(A) = 1 \cdot 0.2160 + 1 \cdot 0.2592 + 0.6923 \cdot 0.3456$$

$$p(A) = 0.7145$$

With this format, player A has a 71.45% chance of winning any given match