ECE 341 - Homework \#12

t-Test with a Single Population. Summer 2023

6-Card Poker

The computed odds of being dealy 2 -pair in 6 -card poker are 12.44% (homework set \#2).

1) The result of four Monte-Carlo simulations with 100,000 poker hands are:
```
12458, 12498, 12573, 12416
```

From these results, determine the 90% confidence interval for the odds of getting 2-pair.

```
>> DATA = [12458, 12498, 12573, 12416];
>> x = mean(DATA)
x = 1.2486e+004
>> s = std(DATA)
s=66.8250
```

From a t -table with 4 degrees of freedom, the t -score for 5% tails is 2.3534 .

df $\backslash \mathrm{p}$	0.001	0.0025	0.005	0.01	0.025	0.05	0.1	0.15	0.2
1	-636.619	-318.309	-63.6567	-31.8205	-12.7062	-6.3138	-3.0777	-1.9626	-1.3764
2	-31.5991	-22.3271	-9.9248	-6.9646	-4.3027	-2.92	-1.8856	-1.3862	-1.0607
3	-12.924	-10.2145	-5.8409	-4.5407	-3.1824	-2.3534	-1.6377	-1.2498	-0.9785
4	-8.6103	-7.1732	-4.6041	-3.7469	-2.7764	-2.1318	-1.5332	-1.1896	-0.941
5	-6.8688	-5.8934	-4.0321	-3.3649	-2.5706	-2.015	-1.4759	-1.1558	-0.9195
9	-4.7809	-4.2968	-3.2498	-2.8214	-2.2622	-1.8331	-1.383	-1.0997	-0.8834
19	-3.8834	-3.5794	-2.8609	-2.5395	-2.093	-1.7291	-1.3277	-1.0655	-0.861

Since we're trying to find the population's mean, divide the standard deviation by the square root of the sample size:

```
>> x + 2.35156*(s / sqrt(4))
ans = 1.2565e+004
>> x - 2.35156*(s / sqrt(4))
ans = 1.2408e+004
```

I'm $\mathbf{9 0 \%}$ certain tha the odds of being dealt 2-pair are in the range of (12,408 to $\mathbf{1 2 , 5 6 5}$)
12,440 is in this range

pdf for the odds of 2-pair in 100,000 hands. 90% confidence interval (red dash lines) Actual probability (blue dash line)
2) The result of twenty Monte-Carlo simulations with 100,000 poker hands are:

```
12591, 12323, 12404, 12622, 12309, 12317, 12544, 12503, 12410, 12483
12385, 12303, 12458, 12418, 12415, 12417, 12309, 12378, 12444, 12463
```

From these results, determine the 90% confidence interval for the odds of getting 2-pair.

Get the data into Matlab

```
>> a = [ 12591, 12323, 12404, 12622, 12309, 12317, 12544, 12503, 12410, 12483];
>> b = [ 12385, 12303, 12458, 12418, 12415, 12417, 12309, 12378, 12444, 12463];
>> DATA = [a,b];
```

Find the mean and standard deviation:

```
>> x = mean(DATA)
x = 1.2425e+004
>> s = std(DATA)
s = 92.1724
```

From a t-table with 19 degrees of freedom, the t -score for 5% tails is 1.7291

df $\backslash \mathrm{p}$	0.001	0.0025	0.005	0.01	0.025	0.05	0.1	0.15	0.2
1	-636.619	-318.309	-63.6567	-31.8205	-12.7062	-6.3138	-3.0777	-1.9626	-1.3764
2	-31.5991	-22.3271	-9.9248	-6.9646	-4.3027	-2.92	-1.8856	-1.3862	-1.0607
3	-12.924	-10.2145	-5.8409	-4.5407	-3.1824	-2.3534	-1.6377	-1.2498	-0.9785
4	-8.6103	-7.1732	-4.6041	-3.7469	-2.7764	-2.1318	-1.5332	-1.1896	-0.941
5	-6.8688	-5.8934	-4.0321	-3.3649	-2.5706	-2.015	-1.4759	-1.1558	-0.9195
9	-4.7809	-4.2968	-3.2498	-2.8214	-2.2622	-1.8331	-1.383	-1.0997	-0.8834
19	-3.8834	-3.5794	-2.8609	-2.5395	-2.093	-1.7291	-1.3277	-1.0655	-0.861

>> low $=x-1.72852 *(s / s q r t(20))$
low $=1.2389 \mathrm{e}+004$
>> high $=x+1.72852 *(s / s q r t(20))$
high $=1.2460 \mathrm{e}+004$

I'm $\mathbf{9 0 \%}$ certain the odds of being dealt t -pair are in the range of ($\mathbf{1 2 , 3 8 9}$ to $\mathbf{1 2 . 4 6 0}$)
12,440 is in this range

Note: With a larger sample size, you have a tighter band on where the actual odds are

6-Card Draw

The computed odds of getting four-of-a-kind in 6-card poker with a draw step are 0.0068287 (homework set \#2)
3) The result of four Monte-Carlo simulations with 100,000 poker hands are:

$$
718,742,778,730
$$

From these results, determine the 90% confidence interval for the odds of getting four of a kind.

```
>> DATA = [718, 742, 778, 730];
>> x = mean(DATA)
x = 742
s = 25.9230
>> low = x - 2.35156*(s/sqrt(4))
low = 711.5203
>> high = x + 2.35156*(s/sqrt(4))
high = 772.4797
```

I'm 90\% certain the odds are in the range of (711.49, 771.49)

$$
\text { actual }=682.87
$$

pdf for the odds of 4 of a kind in 100,000 hands.
4) The result of twenty Monte-Carlo simulations with 100,000 poker hands are:

$$
\begin{aligned}
& 791,763,789,741,734,748,761,765,714,754 \\
& 770,768,770,761,751,790,754,772,719,736
\end{aligned}
$$

From these results, determine the 90% confidence interval for the odds of getting four of a kind.

```
>> a = [791, 763, 789, 741, 734, 748, 761, 765, 714, 754];
>> b = [770, 768, 770, 761, 751, 790, 754, 772, 719, 736];
>> DATA = [a,b];
>> x = mean(DATA)
x = 757.5500
>> s = std(DATA)
s = 21.4390
>> high = x + 1.72852*(s/sqrt(20))
high = 765.8391
>> low = x - 1.72852*(s/sqrt(20))
low = 749.2609
```

I'm 90% certain the odds of being dealt 4-of-a-kind are in the range of (749.26, 765.84)
computed odds are 682.87
Either my Monte-Carlo simulation has an error or my computations have an error
or both...

pdf for the odds of 4 of a kind in 100,000 hands.
90% confidence interval (red dash lines) Actual probability (blue dash line)

Reaction Time

5) Go to the Human Benchmark Dashboard and record your reaction time
https://humanbenchmark.com/tests/reactiontime
Time (ms) $=\{310,257,278,351,292\}$
6) From your results, determine the 90% confidence interval for your reaction time.
```
>> ms = [310, 257, 278, 351, 292];
>> X = mean(ms)
X = 297.6000
>> s = std(ms)
s = 35.5992
>> high = X + 2.1318*s
high = 373.4903
>> low = X - 2.1318*s
low = 221.7097
```

My reaction time should be in the range of $(221.71 \mathrm{~ms}, 373.49 \mathrm{~ms}) 90 \%$ of the time

7) From your results, determine the probability that

- Your next trial will be less than 200 ms
- Your average reaction time is less than 200 ms

$$
\begin{aligned}
& \gg t=(X-200) / \mathrm{s} \\
& t=2.7416
\end{aligned}
$$

This corresponds to a probability of 2.5%
I have a $\mathbf{2 . 5 \%}$ chance of scoring less than 200 ms in my next trial

pdf for my next trial (individual). 2.5% chance it will be less than 200 ms

```
>> t = (X - 200) / (s / sqrt(5))
t = 6.1305
```

This corresponds to a probability of 0.003 (about)
There is a $\mathbf{0 . 3 \%}$ chance my overall reaction time is less than 200 ms

