ECE 341 - Homework \#13

t-Tests with Two Populations. Summer 2023
Let

- $X=5 \mathrm{~d} 10$ (the sum of five 10 -sided dice) plus 0.5 (X wins on ties)
- $\mathrm{Y}=2 \mathrm{~d} 4+3 \mathrm{~d} 6+4 \mathrm{~d} 8$

Monte-Carlo Simulation

1) Run a Monte-Carlo simulation with 100,000 rolls for X and Y. From this, determine the probability that X will win any given game.

In Matlab

```
WIN = 0;
for n=1:1e5
    d4 = ceil(4*rand(1,2));
    d6 = ceil(6*rand(1,3));
    d8 = ceil(8*rand(1,4));
    d10 = ceil(10*rand(1,5));
    X = sum(d10) + 0.5;
    Y = sum(d4) + sum(d6) + sum(d8);
    if(X > Y)
        WIN = WIN + 1;
    end
end
disp(WIN / 1e5)
    0.2630
```

X has a $\mathbf{2 6 . 3 0 \%}$ chance of winning any given game

t-Test: Sample Size = 4

2) Take four measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test.

In Matlab

```
X = [];
Y = [];
for n=1:4
    d4 = ceil(4*rand(1,2));
    d6 = ceil(6*rand(1,3));
    d8 = ceil(8*rand(1,4));
    d10 = ceil(10*rand(1,5));
    X = [X ; sum(d10) + 0.5];
    Y = [Y; sum(d4) + sum(d6) + sum(d8)];
    end
disp([X,Y])
    37.5000 36.0000
    37.5000 41.0000
    24.5000 27.0000
    23.5000 38.0000
```

Find the mean and standard deviation of X and Y

```
>>Mx = mean(X)
Mx = 30.7500
>> Sx = std(X)
Sx = 7.8049
>> My = mean(Y)
My = 35.5000
>> Sy = std(Y)
Sy = 6.0277
```

Find the probability that X will win any given game. Create a new variable, W

$$
\mathrm{W}=\mathrm{X}-\mathrm{Y}
$$

The mean and standard deviation of W are then

```
>> Mw = Mx - My
Mw = -4.7500
>> Sw = sqrt(Sx^2 + Sy^2)
Sw = 9.8615
```

```
>> t = Mw/Sw
t = -0.4817
```

Convert this to a probability using a t -table with 3 degrees of freedom (sample size $=4$)

$$
\mathrm{p}=0.33148
$$

The probability of X winning any given game is
$\mathbf{2 6 . 3 0 \%} \quad$ Monte-Carlo with sample size of $\mathbf{1 0 0 , 0 0 0}$
$\mathbf{3 3 . 1 4 8 \%} \quad t$-test with a sample size of 4

t-Test: Sample Size = $\mathbf{2 0}$

3) Take twenty measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

```
X = [];
Y = [];
for n=1:20
    d4 = ceil(4*rand(1,2));
    d6 = ceil(6*rand (1,3));
    d8 = ceil(8*rand(1,4));
    d10 = ceil(10*rand(1,5));
    X = [X ; sum(d10) + 0.5];
    Y = [Y; sum(d4) + sum(d6) + sum(d8)];
    end
disp([X,Y])
    23.5000 39.0000
    30.5000 32.0000
    31.5000 31.0000
    28.5000 26.0000
    37.5000 29.0000
    25.5000 28.0000
    29.5000 23.0000
    28.5000 30.0000
    29.5000 24.0000
    27.5000 36.0000
    38.5000 39.0000
    26.5000 22.0000
    20.5000 31.0000
    30.5000 32.0000
    31.5000 32.0000
    32.5000 35.0000
    21.5000 41.0000
    26.5000 30.0000
    18.5000 39.0000
    20.5000 35.0000
>> Mw = mean(X) - mean(Y)
Mw = -3.7500
>> Sw = sqrt(var(X) + var(Y))
Sw = 7.6611
>> t = Mw/Sw
t = -0.4895
```

From StatTrek, this corresponds to a probability of 31.503\%

t-Test: Sample Size $=100$

4) Take 100 measurements of X and Y. From this data, determine

- The mean and standard devation of X
- The mean and standard devation of Y
- The probability that X will win any given game using a student-t test

```
X = [];
Y = [];
for n=1:100
    d4 = ceil(4*rand(1,2));
    d6 = ceil(6*rand(1,3));
    d8 = ceil(8*rand(1,4));
    d10 = ceil(10*rand(1,5));
    X = [X ; sum(d10) + 0.5];
    Y = [Y; sum(d4) + sum(d6) + sum(d8)];
    end
>> Mw = mean(X) - mean(Y)
Mw = -5.1300
>> Sw = sqrt(var(X) + var(Y))
Sw = 9.2028
>> t = Mw/Sw
t = -0.5574
```

From StatTrek, this corresponds to a probability of 28.926%

Case	\# rolls	$\mathrm{p}(\mathrm{X}$ wins)
Mote-Carlo	100,000	26.3%
t-test	4	33.148%
t-test	20	21.50%
t-test	100	28.92%

>>

Reaction Time

5) Go to the Human Benchmark Dashboard
https://humanbenchmark.com/tests/reactiontime
(population A): Record your reaction time with both eyes open
Time (ms) $=\{310,257,278,351,292\}$
(population B): Record a different reaction time (20 minutes later. Does practice improve my scrores?)

$$
\text { Time }(\mathrm{ms})=\{285,272,284,280,264\}
$$

6) From your results, determine the probability that

- A's time will be less than B's time next time you run the experiment
- A's average time is less than B's average time

```
>> A = [310, 257, 278, 351, 292];
>> B = [285, 272, 284, 280, 264];
>> Xa = mean(A)
Xa = 297.6000
>> Sa = std(A)
Sa = 35.5992
>> Xb = mean(B)
Xb = 277
>> Sb = std(B)
Sb = 8.8882
```

Create a new variable: $\mathrm{W}=\mathrm{A}-\mathrm{B}$

```
>> Xw = Xa - Xb
Xw = 20.6000
>> Sw = sqrt(Sa^2 + Sb^2)
Sw = 36.6920
```

Find the t -score for a single game

```
>> t = Xw / Sw
t = 0.5614
```

This corresponds to a probability of $\mathrm{p}=0.30224$
Player A has a $\mathbf{3 0 . 2 2 4 \%}$ chance of winning the next game (lower reaction time)
There is a 30.224% chance my reaction time after practice will be worse for one game

Find the t -score for the populations (A's average is less than B's average, or A wins an infinite series)

```
>> Sw = sqrt((Sa^2)/5 + (Sb^2)/5)
Sw = 16.4091
>> t = Xw / Sw
t = 1.2554
>>
```

This corresponds to a probability of 0.13883
Player A has a $\mathbf{1 3 . 8 3 3 \%}$ chance of winning an infinite series
There is a 13.833% chance my overall reaction time gets worse with practice

Conclusion: There is learning going on.

- I'm 86.2% certain my reaction time gets better with practice

Aim Trainer

7) Go to the Human Benchmark Dashboard
https://humanbenchmark.com/tests/aim
(population A): Record your time to hit 30 targets with both eyes open

- repeat to get at least two measurements
(population B): Record your time to hit 30 targets with a different condition (different person, one eye closed, opposite hand, your pick)
- repeat to get at least two measurements

A (dominant hand)

$$
\text { Time }(\mathrm{ms})=\{752,661,758\}
$$

B (nondominant hand)

$$
\text { Time }(\mathrm{ms})=\{1049,1025,908\}
$$

8) From your results, determine the probability that

- A's time will be less than B's time next time you run the experiment
- A's average time is less than B's average time

```
>> A = [752, 661, 758];
>> B = [1049, 1025, 908];
>> Xa = mean(A)
Xa = 723.6667
>> Sa = std(A)
Sa = 54.3538
>> Xb = mean(B)
Xb = 994
>> Sb = std(B)
Sb = 75.4387
```

Form $\mathrm{W}=\mathrm{A}-\mathrm{B}$:

```
>> Xw = Xa - Xb
Xw = -270.3333
>> Sw = sqrt(Sa^2 + Sb^2)
Sw = 92.9803
>> t = Xw / Sw
t = -2.9074
```

From StatTrek, this corresponds to a probability of 0.05307
There is a 5.307% chance my non-dominant hand will win the next game (lower reaction time)
Population:

```
>> Sw = sqrt((Sa^2)/3 + (Sb^2)/3)
Sw = 53.6822
>> t = Xw / Sw
t = -5.0358
```

From StatTrek, this corresponds to a probabiliyty of 0.01862
There is a $\mathbf{1 . 8 6 2 \%}$ chance my non-dominant hand has faster reaction times than my dominant hand

