ECE 341 - Homework \#15

F-Test and ANOVA. Summer 2023

Test of a 3+ Populations

1) The average temperature in Fargo for the past 10 years is: (units: degrees F)

- Source: Hector Airport

		mean	std	n
A	Dec	15.8800	6.2097	10
B	Jan	12.9380	5.0091	10
C	Feb	12.3210	8.2684	10

pdf for A (blue), B (red), and C (magenta).

Determine if the means are the same using an ANOVA test.
Determine the global mean

$$
\bar{G}=\left(\frac{1}{N}\right)\left(n_{a} \bar{A}+n_{b} \bar{B}+n_{c} \bar{C}\right)
$$

Determine MSSb and MSSw

$$
\begin{aligned}
& M S S_{b}=\left(\frac{1}{k-1}\right)\left(n_{a}(\bar{A}-\bar{G})^{2}+n_{b}(\bar{B}-\bar{G})^{2}+n_{c}(\bar{C}-\bar{G})^{2}\right) \\
& M S S_{w}=\left(\frac{1}{N-k}\right)\left(\left(n_{a}-1\right) s_{a}^{2}+\left(n_{b}-1\right) s_{b}^{2}+\left(n_{c}-1\right) s_{c}^{2}\right)
\end{aligned}
$$

Matlab Code:

```
Xa = 15.88;
Sa = 6.2097;
Xb = 12.938;
Sb = 5.0091;
Xc = 12.321;
Sc = 8.2684;
Na = 10;
Nb = 10;
Nc = 10;
k = 3;
N = Na + Nb + NC
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na* (Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

```
N = 30
G = 13.7130
MSSb = 36.1709
MSSw = 44.0060
F = 0.8220
```

 - Enter values for degrees of freedom (\(v_{1}\) and \(v_{2}\)).
 - Enter a value for one, and only one, of the other textboxes.
 - Click Calculate to compute a value for the last textbox.
 Now calculate the probability

- The numerator has (k-1) degrees of freedom
- The denominator has (n-k) degrees of freedom

This corresponds to a probability of 0.54975

Translation:

a) I can reject the null hypothesis (the means are the same) with 54% certainty.
b) The populations may be different. Combining these into an overall population (winter) may not be valid.

You can also get the same answer with an ANOVA table

A	B	C	A	B	C
			$\begin{gathered} 6.2097 \\ \operatorname{std}(A) \end{gathered}$	$\begin{array}{r} 5.0091 \\ \operatorname{std}(B) \end{array}$	$\begin{array}{r} 8.2684 \\ \operatorname{std}(C) \end{array}$
$\mathrm{Na}=10$	$\mathrm{Nb}=10$	$\mathrm{Nc}=10$	$\begin{gathered} 347.04 \\ \text { sum of squares } \end{gathered}$	$\begin{gathered} 225.81 \\ \text { sum of squares } \end{gathered}$	$\begin{gathered} 615.29 \\ \text { sum of squres } \end{gathered}$
$\mathrm{N}=30$			$\begin{gathered} 1320.2 \\ \text { sum of squares } \end{gathered}$		
$\begin{aligned} & 15.88 \\ & \operatorname{mean}(\mathrm{~A}) \end{aligned}$	$\begin{gathered} 12.938 \\ \text { mean(B) } \\ \hline \end{gathered}$	$\begin{gathered} 12.321 \\ \text { mean(C) } \end{gathered}$	MSSw $=44.0060$		
$\begin{gathered} 13.713 \\ \text { (G: Global Mean) } \end{gathered}$					
$\begin{gathered} 46.9589 \\ \mathrm{Na}(\mathrm{~A}-\mathrm{G})^{2} \end{gathered}$	$\begin{gathered} 6.0062 \\ \mathrm{Nb}(\mathrm{~B}-\mathrm{G})^{2} \\ \hline \end{gathered}$	$\begin{gathered} 19.3766 \\ \operatorname{Nc}(C-G)^{2} \end{gathered}$			
$\begin{gathered} 72.3418 \\ \text { sum of squres } \end{gathered}$					
$\mathrm{MSSb}=36.1709$					

```
F = MSSb / MSSw
F = 0.8220
```

Now use an F table with

- numerator $=2$ degrees of freedom ($\mathrm{k}-1$)
- denominator $=27$ degrees of freedom $(\mathrm{N}-\mathrm{k})$

This corresponds to a probability of 0.54975

- Enter values for degrees of freedom (v_{1} and v_{2}).
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the last textbox.

Calculate

2) The global average temperature for three decades are (units: degrees $\mathrm{C} \times 1000$)

- source: NASA Goddard

		mean	std	n
A	$1880-1889$	-169.2	81.8	10
B	$1890-1899$	-237.5	92.68	10
C	$1900-1909$	-302.5	130.8	10

pdf for 1880's (blue), 1890's (red), 1900's (magenta)
Note: temperatures were dropping at the start of the 1900's (with worries of another ice age coming on)

Determine if the means are the same using an ANOVA test.

```
Xa = -169.2;
Sa = 81.8;
Xb = -237.5;
Sb = 92.68;
Xc = -302.5;
Sc = 130.8;
Na = 10;
N.b = 10;
Nc = 10;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

```
N = 30
G = -236.4000
MSSb = 44,431
MSSw = 10,796
F = 4.1153
```

Now use an F table with

- numerator $=2$ degrees of freedom (k-1)
- denominator $=27$ degrees of freedom $(\mathrm{N}-\mathrm{k})$

This corresponds to a probability of 0.97246

Translation

I'm 97% certain that these three populations have different means.
You shouldn't combine these into a single population - the means are changing.

3) The global average temperature for three time-spans are (units: degrees C x 1000)

		mean	std	n
A	$1880-1889$	-169.2	81.8	10
B	$1940-1959$	41.05	133.4	20
C	$1992-2021$	628.94	203.63	30

pdf for 1800 (blue), 1940 (red), 1992 (magenta)
Determine if the means are the same using an ANOVA test.

```
Xa = -169.2;
Sa = 81.8;
Xb = 41.05;
Sb = 133.4;
Xc = 628.94;
Sc = 203.63;
Na = 10;
Nb = 20;
Nc = 30;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na* (Xa-G)^2 + Nb* (Xb-G)^2 + NC* (XC-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```


Results

```
N = 60
G = 299.9533
MSSb = 3.3943e+006
MSSw = 2.8085e+004
F}=120.860
```

Now use an F table with

- numerator $=2$ degrees of freedom ($\mathrm{k}-1$)
- denominator $=57$ degrees of freedom $(\mathrm{N}-\mathrm{k})$

This corresponds to a probability of 1.0000

Translation: I'm over 99.995\% certain that these populations have different means.

- Enter values for degrees of freedom (v_{1} and v_{2}).
- Enter a value for one, and only one, of the other textboxes.
- Click Calculate to compute a value for the last textbox.

Degrees of freedom $\left(\mathbf{v}_{\mathbf{2}}\right) \quad 57$
f Statistic (f) $\quad 120.8601$
Probability: $P(F \leq 120.8601) \quad 1$

Probability: $P(F \geq 120.8601)$
0

Calculate

