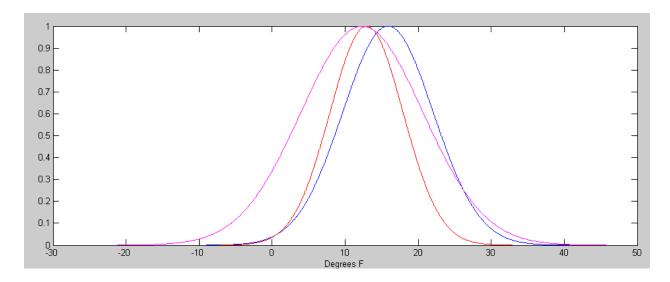
ECE 341 - Homework #15


F-Test and ANOVA. Summer 2023

Test of a 3+ Populations

1) The average temperature in Fargo for the past 10 years is: (units: degrees F)

• Source: Hector Airport

		mean	std	n
А	Dec	15.8800	6.2097	10
В	Jan	12.9380	5.0091	10
С	Feb	12.3210	8.2684	10

pdf for A (blue), B (red), and C (magenta).

Determine if the means are the same using an ANOVA test.

Determine the global mean

$$\overline{G} = \left(\frac{1}{N}\right) \left(n_a \overline{A} + n_b \overline{B} + n_c \overline{C} \right)$$

Determine MSSb and MSSw

$$MSS_{b} = \left(\frac{1}{k-1}\right) \left(n_{a} \left(\overline{A} - \overline{G}\right)^{2} + n_{b} \left(\overline{B} - \overline{G}\right)^{2} + n_{c} \left(\overline{C} - \overline{G}\right)^{2}\right)$$
$$MSS_{w} = \left(\frac{1}{N-k}\right) \left((n_{a} - 1)s_{a}^{2} + (n_{b} - 1)s_{b}^{2} + (n_{c} - 1)s_{c}^{2}\right)$$

Matlab Code:

```
Xa = 15.88;
Sa = 6.2097;
Xb = 12.938;
Sb = 5.0091;
Xc = 12.321;
Sc = 8.2684;
Na = 10;
Nb = 10;
Nc = 10;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

Result:

N =		30
G =		13.7130
MSSb	=	36.1709
MSSw	=	44.0060
F =		0.8220

Now calculate the probability

- The numerator has (k-1) degrees of freedom
- The denominator has (n-k) degrees of freedom

This corresponds to a probability of 0.54975

Translation:

a) I can reject the null hypothesis (the means are the same) with 54% certainty.

b) The populations may be different. Combining these into an overall population (winter) may not be valid.

Enter values for degrees of freedom (v₁ and v₂).
Enter a value for one, and only one, of the other textboxes.
Click Calculate to compute a value for the last textbox.
Degrees of freedom (v₁) 2
Degrees of freedom (v₂) 27
f Statistic (f) 0.822
Probability: P(F≤0.822) 0.54975
Probability: P(F≥0.822) 0.45025

You can also get the same answer with an ANOVA table

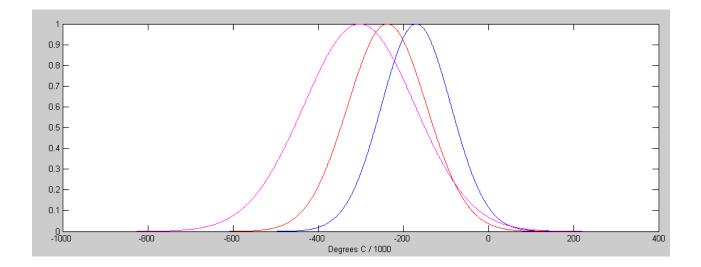
A	В	С	А	В	С
			6.2097 std(A)	5.0091 std(B)	8.2684 std(C)
Na = 10	Nb = 10	Nc = 10	347.04 sum of squares	225.81 sum of squares	615.29 sum of squres
	N = 30			1320.2 sum of squares	
15.88 mean(A)	12.938 mean(B)	12.321 mean(C)		MSSw = 44.0060	
	13.713 (G: Global Mean)				
46.9589 Na (A - G) ²	6.0062 Nb (B - G)²	19.3766 Nc (C - G)²			
	72.3418 sum of squres				
	MSSb = 36.1709				

F = MSSb / MSSw

F = 0.8220

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 27 degrees of freedom (N-k)


This corresponds to a probability of 0.54975

 Enter values for degrees of freedom (v₁ and v₂). 				
 Enter a value for one, and only one, or 	of the other textboxes.			
 Click Calculate to compute a value f 	or the last textbox.			
Degrees of freedom (v ₁) 2				
Degrees of freedom (v ₂) 27				
f Statistic (f)	0.822			
Probability: P(F≤0.822)	0.54975			
Probability: P(F≥0.822)	0.45025			
Calculate				

2) The global average temperature for three decades are (units: degrees C x 1000)

•	source:	NASA	Goddard
---	---------	------	---------

		mean	std	n
А	1880-1889	-169.2	81.8	10
В	1890 - 1899	-237.5	92.68	10
С	1900 - 1909	-302.5	130.8	10

pdf for 1880's (blue), 1890's (red), 1900's (magenta) Note: temperatures were dropping at the start of the 1900's (with worries of another ice age coming on)

Determine if the means are the same using an ANOVA test.

```
Xa = -169.2;
Sa = 81.8;
Xb = -237.5;
Sb = 92.68;
Xc = -302.5;
Sc = 130.8;
Na = 10;
Nb = 10;
Nc = 10;
k = 3;
N = Na + Nb + Nc
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k)
F = MSSb / MSSw
```

```
Result:
```

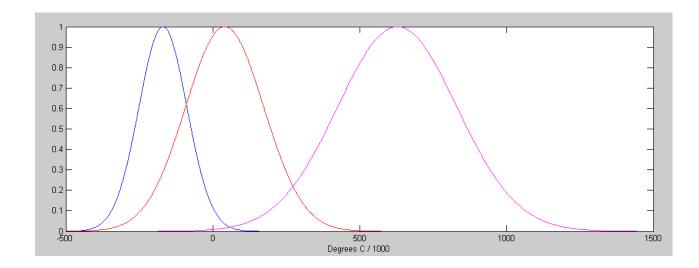
```
N = 30
G = -236.4000
MSSb = 44,431
MSSw = 10,796
F = 4.1153
```

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 27 degrees of freedom (N-k)

This corresponds to a probability of 0.97246

Translation


I'm 97% certain that these three populations have different means.

You shouldn't combine these into a single population - the means are changing.

 Enter values for degrees of freedom (v₁ and v₂). 			
• Enter a value for one, and only one, o	of the other textboxes.		
 Click Calculate to compute a value for 	or the last textbox.		
Degrees of freedom (v ₁)	2		
Degrees of freedom (v ₂)	27		
f Statistic (f)	4.1153		
Probability: P(F≤4.1153)	0.97246		
Probability: P(F≥4.1153)	0.02754		
Calculate			

3) The global average temperature for three time-spans are (units: degrees C x 1000)

		mean	std	n
А	1880-1889	-169.2	81.8	10
В	1940 - 1959	41.05	133.4	20
С	1992 - 2021	628.94	203.63	30

pdf for 1800 (blue), 1940 (red), 1992 (magenta)

Determine if the means are the same using an ANOVA test.

Xa = -169.2; Sa = 81.8; Xb = 41.05; Sb = 133.4; Xc = 628.94; Sc = 203.63; Na = 10; Nb = 20; Nc = 30; k = 3; N = Na + Nb + Nc G = (Na*Xa + Nb*Xb + Nc*Xc) / N MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + Nc*(Xc-G)^2) / (k-1) MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (Nc-1)*Sc^2) / (N-k) F = MSSb / MSSw

Results

```
N = 60
G = 299.9533
MSSb = 3.3943e+006
MSSw = 2.8085e+004
F = 120.8601
```

Now use an F table with

- numerator = 2 degrees of freedom (k-1)
- denominator = 57 degrees of freedom (N-k)

This corresponds to a probability of 1.0000

Translation: I'm over 99.995% certain that these populations have different means.

 Enter values for degrees of freedom (v₁ and v₂). 			
 Enter a value for one, and only one, 	of the other textboxes.		
 Click Calculate to compute a value f 	or the last textbox.		
Degrees of freedom (v ₁) 2			
Degrees of freedom (v ₂) 57			
f Statistic (f)	120.8601		
Probability: P(F≤120.8601)	1		
Probability: P(F≥120.8601)	0		
Calculate			