ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability - Summer 2023
Open-Book, Open Notes. Calculators \& Tarot cards allowed. Chegg or other people not allowed.

1) Permutations \& Combinations in Bison Poker

Assume a 50 -card deck of playing cards

- 10 card values (ace .. ten)
- Five suits (clubs, diamonds, hearts, spades, bison)

Each player is dealt six cards. The best 5-card hand makes up your band in Bison poker.
Calculate the odds of being dealt a full-house:

- best five cards include a 3-of-a-kind and a pair
- hand $=\{$ xxxyyz or xxxyyy $\}$,
- $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ all have different values, suit doesn't matter.

Number of hands possible:

$$
N=\binom{50}{6}=15,890,700
$$

Hands = xxx yy z
$(10 \mathrm{c} 1$ value for x$)(5 \mathrm{c} 3 \mathrm{x}$'s)(9c1 value for y$)(5 \mathrm{c} 2 \mathrm{y}$'s)(8c1 value for z$)(5 \mathrm{c} 1 \mathrm{z})$

$$
M_{1}=\binom{10}{1}\binom{5}{3}\binom{9}{1}\binom{5}{2}\binom{8}{1}\binom{5}{1}=360,000
$$

Hand = xxx yyy
(10c2 values for x and y$)(5 \mathrm{c} 3$ five x 's choose three)(5c3 five y's choose three)

$$
M_{2}=\binom{10}{2}\binom{5}{3}\binom{5}{3}=4,500
$$

The total number of hands that result in a full-house are

$$
M=M_{1}+M_{2}=364,500
$$

The odds are then

$$
p=\left(\frac{M_{1}+M_{2}}{N}\right)=2.2938 \%
$$

2) Conditional Probability

Assume you play the following game:

- Start by rolling a four-sided die. Then,
- Whatever number you rolled (1-4), roll that many six-sided dice:
- Your score is the sum of all dice rolled
(For example, if you roll a 3 on a 4 -sided die, you then roll three six-sided dice)
Determine the probability that the sum of all dice rolled is seven.
Case 1: $\mathrm{d} 4=1$
roll a six on the d6 for the total to be seven

$$
\begin{gathered}
p_{1}=p(7 \mid d 4=1) p(d 4=1) \\
=\left(\frac{1}{6}\right)\left(\frac{1}{4}\right)=\frac{1}{24}
\end{gathered}
$$

case 2 : $\mathrm{d} 4=2$
roll a five with two 6-sided dice
$(1,4),(2,3),(3,2), 4,1)$ by enumeration
$p(2 d 6=5)=\frac{4}{36}$
$p_{2}=p(7 \mid d 4=2) p(d 4=2)$

$$
=\left(\frac{4}{36}\right)\left(\frac{1}{4}\right)=\left(\frac{1}{36}\right)
$$

case 3: $\mathrm{d} 4=3$
roll a four with three 6 -sided dice
$(1,1,2),(1,2,1),(2,1,1)$ by enumeration
$p(3 d 6=4)=\frac{3}{216}$
$p_{3}=p(7 \mid d 4=3)=\left(\frac{3}{216}\right)\left(\frac{1}{4}\right)=\left(\frac{3}{864}\right)$
case 4: $\mathrm{d} 4=4$
roll a three with four 6 -sided dice
$\mathrm{p}=0$

Total Odds:

$$
p=p_{1}+p_{2}+p_{3}+p_{4}
$$

$$
p=\left(\frac{1}{24}\right)+\left(\frac{1}{36}\right)+\left(\frac{3}{864}\right)+0
$$

$$
p=7.5442 \%
$$

3. Binomial Distribution

Let X be the number of 1's and 2's you get when rolling fifteen 6 -sided dice.

- die roll $=\{1,2\} \quad 1$ point
- die roll $=\{3,4,5,6\} \quad 0$ points

Determine the probability that $\mathrm{X}=\mathrm{m}+1$ where m is your birth month (1..12)

$\mathrm{m}+1$ birth month plus one (2.13)	probability $\mathrm{X}=\mathrm{m}+1$ with 15 die rolls
$\mathbf{6}$	$\mathbf{p}=\mathbf{1 7 . 8 5 8 9 \%}$

$$
\begin{aligned}
& p=\binom{15}{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{9} \\
& p=0.178589
\end{aligned}
$$

4. Convolution

Use convolution to determine the product of two polynomials:

$$
y(x)=(3 x+4)\left(2 x^{2}+6 x+9\right)
$$

Note: Show your work to get full credit
a) x^{0} term (determine using convolution) $=36$

	-2	-1	0	1	2	3
$9+6 x+2 x^{2}$	0	0	9	6	2	0
$3 x+4$	0	3	4	0	0	0
product	0	0	36	0	0	0

b) x^{1} term (determine using convolution) $=51$

	-2	-1	0	1	2	3
$9+6 x+2 x^{2}$	0	0	9	6	2	0
$3 x+4$	0	0	3	4	0	0
product	0	0	27	24	0	0

c) x^{2} term (determine using convolution) $=26$

	-2	-1	0	1	2	3
$9+6 x+2 x^{2}$	0	0	9	6	2	0
$3 x+4$	0	0	0	3	4	0
product	0	0	0	18	8	0

d) x^{3} term (determine using convolution) $=6$

	-2	-1	0	1	2	3
$9+6 x+2 x^{2}$	0	0	9	6	2	0
$3 x+4$	0	0	0	0	3	4
product	0	0	0	0	6	0

5. Geometric \& z-Transforms

Let

- X be the number of rolls of an 10 -sided die until you get a one with the following moment-generating function:

$$
X=\left(\frac{0.1}{z-0.9}\right)
$$

- Y be the number of rolls of a 20 -sided die until you get a one with the following moment-generating function:

$$
Y=\left(\frac{0.05}{z-0.95}\right)
$$

Determine the pdf for $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ using z -transforms
(the number of times you have to roll a 10-sided die until you get a 1, then roll a 20-sided die until you get a 1)

$$
W=\left(\frac{0.1}{z-0.9}\right)\left(\frac{0.05}{z-0.95}\right)
$$

doing partial fractions

$$
W=\left(\frac{-0.1}{z-0.9}\right)+\left(\frac{0.1}{z-0.95}\right)
$$

multiply both sides by z

$$
z W=\left(\frac{0.1 z}{z-0.95}\right)-\left(\frac{0.1 z}{z-0.9}\right)
$$

Take the inverse z -transform

$$
z w(k)=\left(0.1(0.95)^{k}-0.1(0.9)^{k}\right) u(k)
$$

Divide by z

$$
w(k)=\left(0.1(0.95)^{k-1}-0.1(0.9)^{k-1}\right) u(k-1)
$$

You can also write this as

$$
w(k)=\left(0.105263(0.95)^{k}-0.111111(0.9)^{k}\right) u(k-1)
$$

