ECE 341 - Test \#1

Combinations, Permitations, and Discrete Probability - Summer 2023
Open-Book, Open Notes. Calculators \& Tarot cards allowed. Chegg or other people not allowed.

1) Permutations \& Combinations in Bison Poker

Assume a 50 -card deck of playing cards

- 10 card values (ace .. ten)
- Five suits (clubs, diamonds, hearts, spades, bison)

Each player is dealt six cards. The best 5 -card hand makes up your band in Bison poker.
Calculate the odds of being dealt a full-house:

- best five cards include a 3-of-a-kind and a pair
- hand = $\{x x x y y z$ or xxxyyy $\}$,
- $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ all have different values, suit doesn't matter.

2) Conditional Probability

Assume you play the following game:

- Start by rolling a four-sided die. Then,
- Whatever number you rolled (1-4), roll that many six-sided dice:
- Your score is the sum of all dice rolled
(For example, if you roll a 3 on a 4 -sided die, you then roll three six-sided dice)
Determine the probability that the sum of all dice rolled is seven.

3. Binomial Distribution

Let X be the number of 1's and 2's you get when rolling fifteen 6 -sided dice.

- die roll $=\{1,2\} \quad 1$ point
- die roll $=\{3,4,5,6\} \quad 0$ points

Determine the probability that $\mathrm{X}=\mathrm{m}+1$ where m is your birth month (1..12)

$\mathrm{m}+1$ birth month plus one (2..13)	probability $\mathrm{X}=\mathrm{m}+1$ with 15 die rolls

4. Convolution

Use convolution to determine the product of two polynomials:

$$
y(x)=(3 x+4)\left(2 x^{2}+6 x+9\right)
$$

Note: Show your work to get full credit
a) x^{0} term (determine using convolution)
b) x^{1} term (determine using convolution)
c) x^{2} term (determine using convolution)
d) x^{3} term (determine using convolution)

5. Geometric \& z-Transforms

Let

- X be the number of rolls of an 10 -sided die until you get a one with the following moment-generating function:

$$
X=\left(\frac{0.1}{z-0.9}\right)
$$

- Y be the number of rolls of a 20 -sided die until you get a one with the following moment-generating function:

$$
Y=\left(\frac{0.05}{z-0.95}\right)
$$

Determine the pdf for $\mathrm{W}=\mathrm{X}+\mathrm{Y}$ using z -transforms
(the number of times you have to roll a 10-sided die until you get a 1, then roll a 20-sided die until you get a 1)

