ECE 341-Test \#2

Continuous Probability - Summer 2023

1) Continuous PDF

Let

$$
y=\left\{\begin{array}{cc}
\alpha \cdot 1 & 1>x>1.5 \\
\alpha \cdot(1.75-0.5 x) & 1.5<x<3.5 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Determine the scalar, α, so that this is a valid pdf (i.e. the total area $=1.0000$)

The area under the curve is $3 / 2$

$$
\alpha=2 / 3
$$

b) Determine the moment generating function (i.e. LaPlace transform)

Take the derivatives and note where the delta functions are
$\mathrm{y}^{\prime}: \quad s Y=1 \cdot e^{-s}$
y": $\quad s^{2} Y=\left(-\frac{1}{2} e^{-1.5 s}+\frac{1}{2} e^{-3.5 s}\right)$
Putting it together

$$
Y=\left(\frac{2}{3 s}\right)\left(e^{-s}\right)+\left(\frac{2}{3 s^{2}}\right)\left(-\frac{1}{2} e^{-1.5 s}+\frac{1}{2} e^{-3.5 s}\right)
$$

2) Uniform Distribuitions

Let A, B, and C be continuous uniform distributions

- $A=$ uniform over the interval of $(0,2)$
- $B=$ uniform over the interval of $(1,4)$,
- $\mathrm{X}=\mathrm{A}+\mathrm{B}$

Use moment generating functions to determine the pdf for X (i.e. LaPlace Transforms)
Start with the LaPlace transform of A and B

$$
\begin{aligned}
& A(s)=\left(\frac{1}{2 s}\right)\left(1-e^{-2 s}\right) \\
& B(s)=\left(\frac{1}{3 s}\right)\left(e^{-s}-e^{-4 s}\right)
\end{aligned}
$$

In the LaPlace domain, $\mathrm{A}(\mathrm{s})$ and $\mathrm{B}(\mathrm{s})$ multiply to produce $\mathrm{X}(\mathrm{s})$

$$
X(s)=\left(\frac{1}{2 s}\right)\left(1-e^{-2 s}\right) \cdot\left(\frac{1}{3 s}\right)\left(e^{-s}-e^{-4 s}\right)
$$

Doing some algebra

$$
X(s)=\left(\frac{1}{6 s^{2}}\right)\left(e^{-s}-e^{-3 s}-e^{-4 s}+e^{-6 s}\right)
$$

using LaPlace transforms:

$$
\begin{aligned}
& \left(\frac{1}{s^{2}}\right) \rightarrow t u(t) \\
& e^{-T s} F(s) \rightarrow f(t-T)
\end{aligned}
$$

$x(t)$ is then

$$
x(t)=\left(\frac{1}{6}\right)((t-1) u(t-1)-(t-3) u(t-3)-(t-4) u(t-4)+(t-6) u(t-6))
$$

3) Gamma CDF

Let A, B be continuous exponential distributions:

- A has a mean of 3 seconds $\quad a(t)=\frac{1}{3} e^{-t / 3} u(t)$

$$
\begin{aligned}
& A(s)=\left(\frac{1 / 3}{s+1 / 3}\right) \\
& B(s)=\left(\frac{1 / 4}{s+1 / 4}\right)
\end{aligned}
$$

- B has a mean of 4 seconds $\quad b(t)=\frac{1}{4} e^{-t / 4} u(t)$

Determine the equation for the cdf (i.e. the integal of the pdf) for $\mathrm{Y}=\mathrm{A}+\mathrm{B}$ using moment generating functions (i.e. LaPlace transforms)

The cdf is

$$
\begin{aligned}
& Y(s)=\left(\frac{1}{s}\right) \cdot A(s) \cdot B(s) \\
& Y(s)=\left(\frac{1}{s}\right)\left(\frac{1 / 3}{s+1 / 3}\right)\left(\frac{1 / 4}{s+1 / 4}\right)
\end{aligned}
$$

Doing a partial fraction expansion

$$
Y(s)=\left(\frac{1}{s}\right)+\left(\frac{3}{s+1 / 3}\right)+\left(\frac{-4}{s+1 / 4}\right)
$$

Take the inverse LaPlace transform to get the cdf

$$
y(t)=\left(1+3 e^{-t / 3}-4 e^{-t / 4}\right) u(t)
$$

4) Central Limit Theorem

The Dungeons and Dragons spell Insect Plague does 4-40 damage (the sum of four 10-sided dice). Use a normal approximation to determine the probability that the total damage is less than 9.5 .

Note: for a single 10 -sided die

- mean $=5.5$
- variance $=8.25$

mean of 4d10	standard deviatio of 4 d 10	z-score for sum $=9.5$	$\mathrm{p}($ sum $<9.5)$
22.00	5.7456	2.17597	1.478%

The mean and variance scale with the number of dice

$$
\begin{aligned}
& \mu=4 \cdot 5.5=22 \\
& \sigma^{2}=4 \cdot 8.25=33 \\
& \sigma=\sqrt{33}=5.7456
\end{aligned}
$$

The z -score for 9.5 damage is the distance to the mean in terms of standard deviations

$$
z=\left(\frac{22-9.5}{5.7456}\right)=2.17558
$$

Use a normal table to convert this to a probability

$$
p=0.01479
$$

There is a $\mathbf{1 . 4 7 8 \%}$ chance of doing less than 9.5 damage with an Insect Plague spell

Checking with a Monte-Carlo simulation

```
N = 0;
for n=1:1e6
    D = sum( ceil( 10*rand(1,4) ) );
    if(D < 9.5) N = N + 1; end
end
N/1e6
    ans = 0.012634
```


5) Testing with Normal pdf

Let

- $\quad x$ have a uniform distribution over the range of $(1,10)$
- A be the sum of three x's (range $=3 . .30$)
- B be the sum of four x's (range $=4 . .40$)

Use a normal approximation to determine the probability that $\mathrm{A}>\mathrm{B}$
Note: The mean and variance for x (a uniform distribution over the range of $(1,10)$) is

- $\operatorname{mean}(x)=5.5$
- $\quad \operatorname{variance}(x)=6.75$

A:

$$
\begin{aligned}
& \mu_{a}=3 \cdot 5.5=16.5 \\
& \sigma_{a}^{2}=3 \cdot 6.75=20.25
\end{aligned}
$$

B:

$$
\begin{aligned}
& \mu_{b}=4 \cdot 5.5=22.0 \\
& \sigma_{b}^{2}=4 \cdot 6.75=27.00
\end{aligned}
$$

$\mathrm{W}=\mathrm{A}-\mathrm{B}$

$$
\begin{aligned}
& \mu_{w}=\mu_{a}-\mu_{b}=-5.5 \\
& \sigma_{w}^{2}=\sigma_{a}^{2}+\sigma_{b}^{2}=47.25 \\
& \sigma_{w}=\sqrt{47.25}=6.8738
\end{aligned}
$$

The z-score for $\mathrm{A}>\mathrm{B}$ is

$$
\begin{aligned}
& z=\left(\frac{\mu_{w}-0}{\sigma_{w}}\right)=\left(\frac{-5.5}{6.8738}\right) \\
& z=-0.80013
\end{aligned}
$$

Use a normal distribution table to convert this to a probability

$$
\mathrm{p}=0.21182
$$

Player A has a $\mathbf{2 1 . 1 8 2 \%}$ chance of beating player B

Running a Monte-Carlo simulation to check:

```
N = 0;
for n=1:1e6
    A = sum( 1 + 9*rand(1,3) );
    B = sum( 1 + 9*rand(1,4) );
    if(A>B) N = N + 1; end
end
N / 1e6
    ans = 0.2158
```

Monte-Carlo gives a 21.58% chance of A winning

