ECE 341-Test \#3: Name

Markov Chains and Data Analysis

1) Markov Chains: Two players are plaing a match. To win the match, a player has to win three games in a row. Assume for each game

- A has a 50% chance of winning
- B has a 40% chance of winning, and
- There is a 10% chance of a tie (breaking all winning streaks)
a) Express the probability that player A or B has an n-game winning streak as:

$$
X(k+1)=A X(k)
$$

where $\mathrm{X}(\mathrm{k})$ is defined as the probability after game k that

$$
\left[\begin{array}{c}
P 3(k+1) \\
P 2(k+1) \\
P 1(k+1) \\
P 0(k+1) \\
M 1(k+1) \\
M 2(k+1) \\
M 3(k+1)
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0.5 & 0.5 & 0.5 & 0 \\
0 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 & 0 \\
0 & 0.4 & 0.4 & 0.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.4 & 1
\end{array}\right]\left[\begin{array}{c}
P 3(k) \\
P 2(k) \\
P 1(k) \\
P 0(k) \\
M 1(k) \\
M 2(k) \\
M 3(k)
\end{array}\right]
$$

b) Explain how you would determine the odds of A winning the match (A is first to get a 3-game winning streak).

- Or find the odds if you have access to Matlab

In Matlab

```
>> a1 = [1,0.5,0,0,0,0,0];
>> a2 = [0,0,0.5,0,0,0,0];
>> a3 = [0,0,0,0.5,0.5,0.5,0];
>> a4 = [0,0.1,0.1,0.1,0.1,0.1,0];
>> a5 = [0,0.4,0.4,0.4,0,0,0];
>> a6 = [0,0,0,0,0.4,0,0];
>> a7 = [0,0,0,0,0,0.4,1];
>> A = [a1;a2;a3;a4;a5;a6;a7]
```

1.0000	0.5000	0	0	0	0	0
0	0	0.5000	0	0	0	0
0	0	0	0.5000	0.5000	0.5000	0
0	0.1000	0.1000	0.1000	0.1000	0.1000	0
0	0.4000	0.4000	0.4000	0	0	0
0	0	0	0	0.4000	0	0
0	0	0	0	0	0.4000	1.0000

>> $\mathrm{XO}=[0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0]$
$\mathrm{XO}=$
0
0
0
1
0
0
0
>> A^100 * X0
ans $=$
0.6352
0.0000
0.0000
0.0000
0.0000
0.0000
0.3648

A has a $\mathbf{6 3 . 5 2 \%}$ chance of winning the match
2) t-Test (One data set). The gain of nine 6144 NPN transistors were recorded:

- Gain $=\{374,370,359,370,351,357,352,364,372\}$
- mean $=363.2222$
- standard deviation $=8.7860$
a) (individual) If I measure a tenth 6144 NPN transistor, what is the 90% confidence interval for the gain of this transistor?
5% tails with 8 degrees of freedom corresponds to a t-score of -1.85938
The 90% confidence interval is

$$
\bar{x}-1.85938 s<\text { gain }<\bar{x}+1.85938 s
$$

346.8855 <Individual Gain< 379.5585

```
>> x = 363.222;
>> s = 8.7860;
>> high = x + 1.85938*s
high = 379.5585
>> low = x - 1.85938*s
low = 346.8855
```

b) (population) What is the 90% confidence interval for the average gain of a 6144 NPN transistor?

For populations, you divide the variance by the sample size

$$
\bar{x}-1.66406\left(\frac{s}{\sqrt{9}}\right)<\text { gain }<\bar{x}+1.66406\left(\frac{s}{\sqrt{9}}\right)
$$

$357.7765<$ Population Gain<368.6675

```
>> high = x + 1.85938*s/sqrt(9)
high = 368.6675
>> low = x - 1.85938*s/sqrt(9)
low = 357.7765
>>
```

3) t-Test (Two data sets): The points scored by the Vikings and Packers in 2022 are as follows:

Team	Average points	standard deviation points	games
Vikings	24.9444	8.3135	17
Packers	21.7647	9.2096	17

a) (Individual) Determine using a Student t-Test the probability that the Vikings will outscore the Packers next time they play.

Form a new variable, $\mathrm{W}=\mathrm{V}-\mathrm{P}$

$$
\begin{aligned}
& \bar{x}_{w}=\bar{x}_{v}-\bar{x}_{p}=+3.1797 \\
& s_{w}=\sqrt{s_{v}^{2}+s_{p}^{2}}=12.4096
\end{aligned}
$$

Find the t -score

$$
t=\frac{x_{w}}{s_{w}}=0.2563
$$

Convert to a probability with 16 degrees of freedom

$$
\mathrm{p}=0.59951
$$

The Vikings have a $\mathbf{5 9 . 0 5 1 \%}$ chance of scoring more points than the Packers in their next game

```
>> Xv = 24.9444;
>> Sv = 8.3135;
>> Xp = 21.7647;
>> Sp = 9.2096;
>> Xw = Xv - Xp
Xw = 3.1797
>> Sw = sqrt(Sv^2 + Sp^2)
Sw = 12.4069
>> t = Xw / Sw
t = 0.2563
>>
```

b) (population) Determine using a Student t -Test the probability that the Vikings have the better offense overall.

For populations, you divide the variace by the sample size

```
>> Xw = Xv - Xp
Xw = 3.1797
>> Sw = sqrt ( (Sv^2)/17 + (Sp^2)/17)
Sw = 3.0091
>> t = Xw / Sw
t = 1.0567
```

From StatTrek, a t-score of 1.0567 with 16 degrees of freedom corresponds to a probability of 084683
The Vikings have the better offense with a probability of $\mathbf{8 5 . 6 9 3} \%$
4) Chi-Squared Test: The points scored by the Minnesota Vikings in 2022 were:

Point Range	$0-9$	$10-19$	$20-29$	$30-39$	$40-49$	Total Games
Frequency	3	2	12	4	0	21

Use a chi-squared test to determine the chance that the Vikings score has a uniform distribution (equal liklihood over the range of $(0,49)$ points).

Set up a chi-squared table

bin	p	np	N	chi-squared
$0-9$	$1 / 5$	4.2	3	0.34
$10-19$	$1 / 5$	4.2	2	1.15
$20-29$	$1 / 5$	4.2	12	14.49
$30-39$	$1 / 5$	4.2	4	0.01
$40-49$	$1 / 5$	4.2	0	4.2

Convert to a probability using a chi-squared table with four degrees of freedom

$$
\mathrm{p}=0.99954
$$

There is a $\mathbf{9 9 . 9 5 4 \%}$ chance that the Viking's score does not follow a uniform distribution

4
5) ANOVA (Three data sets): The points scored in 20222 by the Vikings, Packers, and Bears are as follows. Use an Analysis of Variance test to determine the probability that the means are different.

Team	mean (points per game)	standard deviation (points per game)	\# games
A: Vikings	24.9444	8.3135	17
B: Packers	21.7647	9.2096	17
C: Bears	19.1765	8.4575	17

```
Xa = 24.9444;
Sa = 8.3135;
Xb = 21.7647;
Sb = 9.2096;
Xc = 19.1765;
Sc = 8.4575;
Na = 17;
Nb = 17;
Nc = 17;
k = 3;
N = Na + Nb + NC
G = (Na*Xa + Nb*Xb + Nc*Xc) / N
MSSb = (Na*(Xa-G)^2 + Nb*(Xb-G)^2 + NC*(Xc-G)^2) / (k-1)
MSSw = ((Na-1)*Sa^2 + (Nb-1)*Sb^2 + (NC-1)*Sc^2) / (N-k)
F = MSSb / MSSw
N = 51
G = 21.9619
MSSb = 141.8875
MSSw = 75.1534
F= 1.8880
```

From an F-table with 2 degrees of freedom (numerator) and 48 degrees of freedom (denominator), this corresponds to a probability of 0.83756

There is an $\mathbf{8 3 . 7 5 6 \%}$ chance that the means of these populations are different

