Syllabus and Introduction ECE 341: Random Processes North Dakota State University

Instructor: Jacob Glower

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

ECE 341: Random Processes

Instructor:	Jacob Glower	
Office Location:	at home	
Office Phone:	none at present	
Class Hours:	noon-2:30pm Monday - Friday (also on zoom)	
Office Hours:	7-8pm on Zoom	
Lectures:	YouTube videos	
Text:	Posted on Bison Academy	
Other References		

- Probability and Stochastic Processes, Yates (\$6 used)
- Probability and Statistics, DeGroot, (\$6 used) recommended
- Principles of Statistics, Bulmer (\$6 used)
- A First Course on Stochastic Processes, Karlin and Taylor (\$11 used)
- Introduction to Statistics: (Univ British Columbia free!)

Grading

- Midterms: 1 unit each
- Homework & Quizzes 1 unit
- Total: Average of all above

Final Percentage:

- 100% 90% A
- 89% 80% B
- 79% 70% C
- 69% 60% D
- < 59% E

Grading will be on a straight scale to encourage working together

• Just not on tests (please)

Homework: Homework is graded as

- 80%: You attempted the problem with an organized approach I can follow.
- 20%: You got the right answer.

Homework is due on a daily basis. Solutions will be posted and we'll go over the homework the following day.

Testing:

- Tests will be posted at 8am, due 7am the following day.
- 2 hour time limit from when you start
- Each test will be different (each student generates random numbers for the test)
- All tests are open-book, open notes, calculators, Matlab all permitted
- Just not other people.
 - Providing or receiving help from others prohibited
 - Posting test on-line and/or using an on-line solution prohibited

What is a random process?

- A repeatable event
- The outcome changes each time

Not a Random Process	Random Process
Can I write a program to play poker?Either yes or no	How long will it take me to write a program similar to playing poker?
Did it rain last April?past event: yes or no	 varies: 10 to 1000 minutes How much will it rain in April?
Will the Vikings beat the Packers?not a repeatable event	• varies each year

Matlab Review

Matlab can be treated like a calculator that works with matrices

[start of matrix
]	end of matrix
;	next column next row
+	addition
-	subtraction
*	multiplication
/	division
inv(A)	matrix inverse

Con	nmand Window
	>> $A = [1, 2, 3]$
	A =
	1 2 3
	>> B = [4,5 ; 6,7 ; 8,9]
	В =
	4 5
	6 7 8 9
	>> C = A*B
	C =
	40 46
fx.	>>

Flow Control

For-Loop

for i=1:10
 t = t + dt;
 end

While-Loop

If

```
if(time < 10)
    x = 0;
    end</pre>
```

If-Else

```
if(x>y)
   points = points + 1;
elseif(x == y)
   points = points + 0.5;
else
   points = points + 0;
end
```

Command Window

```
>> X = zeros(1,4);
  >> for i=1:4
       X(i) = i \star i;
       end
  >> X
 Х =
       1 4 9 16
 >> x = 10;
 >> dx = 0;
  >> t = 0;
  >> dt = 0.01;
  >> while(x>0)
       ddx = -9.8;
       dx = dx + ddx \star dt;
       x = x + dx \star dt;
       t = t + dt;
       end
  >> t
 t =
      1.4300
fх
```

Matlab Scripts

If you're going to run the same code over and over, you can place it in a script.

Each time you execute the script, it's like pasting that code into the command window.

note: This is a convenient way to build a more complex program.

- Display the data when writing the program to see what is happening
- You can fix errors along the way

Editor - C:\Documents and Settings\Administrator\My Documents\MATLAB\E		
File	Edit Text Go Cell Tools Debug Desktop Window Help	
: 🎦	🖆 📓 🕹 🐂 🛍 🤊 (° 🍓 🖅 - 👭 🗢 🔶 / 🖄 - 🛃 🕷 🦷	
*	$[] - 1.0 + \div 1.1 \times \% \% 0$	
1	<pre>% Lecture #1: Monte Carlo</pre>	
2	% Roll six dice	
3	% Count how many times you get 3 of a	
4	% xxx a b c	
5	% xxx aa b	
6	- tic	
7	- Pair3 = 0;	
8	for games = 1:1e5	
9	<pre>Dice = ceil(6*rand(1,6));</pre>	
10	<pre>Dice = sort(Dice);</pre>	
11	<pre>% check for pairs</pre>	
12	- N = zeros(1,6);	
13	- for i=1:6	
14	- [for j=1:6	
15	- if(Dice(j) == i)	
16	- N(i) = N(i) + 1;	
17	- end	
18	- end	
19	- end	
20	<pre>- [N,b] = sort(N, 'descend');</pre>	
21	$- \underbrace{11}_{1} ((N(1) == 3) \& (N(4) < 3))$	
22	- Pair3 = Pair3 + 1;	
23	- end	
24	ena	
25	* probability:	
26	- uisp('3 of a kind odds')	
27	- For too	
28		
29		

Matlab Functions

Part of what makes Matlab so powerful is you can create your own functions

- These functions become Matlab commands that other functions can use.
- As companies build up their library of Matlab functions, they get better and better at designing their product.
- The Matlab functions become company proprietary information (design secrets).

Random Numbers in Matlab

- rand(4,1): generate a 4x1 matrix of random numbers in the range of (0,1)
- randn(4,1) generate a 2x3 matrix of normally distributed random numbers
- ceil(6 * rand(4,1)): generate four 6-sided dice (4d6)

```
Command Window
  >> rand(4,1)
  ans =
       0.1712
       0.7060
       0.0318
       0.2769
  >> randn(4,1)
  ans =
      -0.8095
     -2.9443
       1.4384
       0.3252
  >> ceil(6 * rand(4,1))
  ans =
        2
        6
        1
        3
f_{x} >>
```

Problem:

- How would you mathematically describe the rand() function in MATLAB?
- How would you mathematically describe any random process?

Monte Carlo simulation

- Take a large number of samples
- As the sample size go to infinity, you fully describe the random process.
- Ex: take 1000 samples:

```
X = rand(1000,1);
Die = ceil( 6 * rand(1000,1) );
```

List 1000 numbers isn't very useful. Instead, lets plot the data:

Again, this doesn't tell you much.

Sort the data and plot (cumulative distribution function or cdf):

```
Xs = sort(X);
p = [1:length(Xs)]' / length(Xs);
plot(Xs, p)
xlabel('Y');
ylabel('Probability X < Y')</pre>
```


Discrete CDF (dice)

```
d6 = ceil( 6*rand(100,1) );
d6 = sort(d6);
p = [1:length(d6)]' / length(d6);
plot(d6, p)xlabel('X');
ylabel('Probability Die < X');</pre>
```


Cumulative Distribution Function

f(x) = p(y < x)

Note that for a CDF,

- It starts at zero (the probability that the result is less than minus-infinity is zero. It has to be something.)
- It goes to one (the probability that some number results is one.)

Probability Density Function (pdf)

- Derivative of cdf
- Probability that x has a certain value

Example: rand is a uniform distribution over the interval (0, 1)

Probability Density Function for a uniform distribution

Discrete pdf:

Probability Density Function for a 6-sided die

This is the first concept to get across in this class:

- pdf describes the probabilty distribution
- cdf also describes the probability distribution

We'll look at some standard distributions:

- Bernoulli Trial: Flip a coin
- Binomial Distribution: Flip N coins
- Geometric Distribution: Flip a coin until you get a heads
- Pascal Distribution: Flip a coun until you get N heads
- Hyper Geometric: Geometric without replacement
- Poisson: Number of events in a time interval
- Normal (Gaussian)
- Binomial distribution where N goes to infinity

Mean, Standard Deviation, Moments

Problem: Describe a probability distribution with a number

A second concept to get across is that simply giving the mean of a random process doesn't tell you much. You need more information.

- pdf or cdf preferred
- Mean (average) and standard deviation (spread) OK
- Moment Generating Function (LaPlace transform or z-transform)
 - m0 = 1

- Oth moment (total probability must be 1)
- m1 = average(X) 1st moment
- $m2 = average(X^2)$ 2nd moment
- etc.

Third, suppose you have a random process and you'd like to test a hypothesis, such as

- Does Y have a mean that's greater than X?
- Is X a uniform distribution?

The first question results in comparing the means of the samples with the spread (standard deviation) taken in to account. This is a t-test.

The second question results in comparing the sample PDF or CDF's and results in a chi-squared distribution.

Fun with Monte-Carlo Simulations

Problem: Two teams playing a match

- Team A has 60% chance of winning any given game
- The first team to win 4 games wins the match (best of 7 series)

What is the probability that team A wins the match?

Solution

- Play a single match (lines 6..14)
- Note this is a for-loop
- Then repeat 1000 times
- Team A has a 71.7% chance of winning

🖻 Editor	- C:\Documents and Settings\Administrator\My Documents\MATLAB\E
File Edit	Text Go Cell Tools Debug Desktop Window Help
: 🗋 🖨	■ & ■ ■ ♥ ♥ 🌭 🗇 + 🛤 🖛 🔶 ▶ • 🗄 🗶 🖷 🦉
*** •	- 1.0 + ÷ 1.1 × ‰ ‰ 0 Run Win_4.m (F5)
1	% ECE 341 Lecture 0
2	% 7 game match
3 —	Matches = 0;
4	
5 —	- for n=1:1000
6 —	Wins = 0;
7 —	for i=1:7
8 —	if(rand < 0.6)
9 —	Wins = Wins + 1;
10 -	end
11 -	- end
12	
13 —	if(Wins >= 4)
14 —	Matches = Matches + 1;
15 —	end
16	
17 -	end
18 -	Matches
19	
20	
Farkle.m	× Nd6.m × NchooseM.m × hw9.m × Poker.m* × Win_4.m ×
	script Ln 2
1 Nd6(N	0
	Matches =
	Hatches -
	717
	, , ,

More Fun with Monte Carlo

Problem: Two teams playing a match

- Team A has 60% chance of winning any given game
- The first team to win by 4 games wins the match

What is the probability that team A wins the match?

Solution

- Play a single match (lines 6..14)
- Note that this is a while-loop
- Then repeat 100,000 times
- Team A has an 83.431% of winning.

🖻 Editor	- C:\Documents and Settings\Administrator\My Documents\MATLAB\E
File Edit	Text Go Cell Tools Debug Desktop Window Help
	📓 & ங 🛍 🤊 (° 🍪 🖅 • 🏘 🗭 🔶 😥 [] 🔞 🕯
=	-1.0 + $\div 1.1$ × $\%_{+}^{}\%_{+}^{*}$ 0
1	% ECE 341 Lecture 0
2	୫ 7 game match
3 —	Matches = 0;
4	
5 —	for n=1:100000
6 –	Wins = 0;
7 —	while(abs(Wins) < 4)
8 —	if(rand < 0.6)
9 —	Wins = Wins + 1;
10 -	else
11 -	Wins = Wins - 1;
12 —	end
13 —	- end
14	
15 —	if(Wins >= 4)
16 -	Matches = Matches + 1;
17 -	end
18	
19 —	end
20 –	Matches
: Farkle.m	× Nd6.m × NchooseM.m × hw9.m × Poker.m* × Win_By_4.m ×
	script In 5
🕗 Nd6(N)
	Matabas -
	Matches =
	83431

Fun with Monte Carlo Simulations: Farkle Odds

Problem: Roll 6 dice.

- What is the probability of getting 3 of a kind?
- (xxx a b c) or (xxx aa b)

Monte-Carlo Simulation

- Roll 6 dice 10,000 times
- Count how many times you get 3 of a kind

Sort of the definition of probability

• Repeatable event (roll 6 dice)

Code: Farkle.txt

- Roll 6 dice (line 8)
- Count the frequency of each number
 - lines 11-18
- Sort in descending order
 - line 19
- Check if the result was a 3 of a kind
 - xxx a b c
 - 333 1 1 1
 - xxx aa b
 - 333 22 1

```
1
        % Lecture #1: Monte Carlo
        % Roll six dice
 2
        % Count how many times you get 3 of a kind
 3
 4
        % xxx a b c
 5
        % xxx aa b
 6 -
        Pair3 = 0;
 7 -
      \Box for games = 1:1e4
           Dice = ceil(6*rand(1,6));
 8 -
           Dice = sort(Dice);
 9 -
           % check for pairs
10
11 -
           N = zeros(1,6);
12 -
           for i=1:6
      \overline{-}
13 -
      Ē
              for j=1:6
14 -
                   if(Dice(j) == i)
                       N(i) = N(i) + 1;
15 -
16 -
                   end
17 -
              end
18 -
           end
           [N,b] = sort(N, 'descend');
19 -
        if ((N(1) == 3) \& (N(4) < 3))
20 -
            Pair3 = Pair3 + 1;
21 -
22 -
            end
23 -
        end
        % probability:
24
25 -
        disp('3 of a kind odds')
        Pair3 / 1e4
26 -
27
```

Result: 100,000 rolls

- Each time you run the code you get a different result
- It's random
- Probability is about 31.6% chance

```
You can determine the 90% confidence interval for the probability
```

- t-test
- coming soon

```
Command Window
      0.3164
  Elapsed time is 0.348917 seconds.
  3 of a kind odds
  ans =
      0.3171
  Elapsed time is 3.508368 seconds.
  3 of a kind odds
  ans =
      0.3156
  Elapsed time is 3.488612 seconds.
  3 of a kind odds
  ans =
      0.3153
  Elapsed time is 3.612619 seconds.
f_{x} >>
```

Monte Carlo Simulations: Poker Odds

Determine the odds of drawing 3 of a kind in poker

- 52 card deck
- Draw 5 cards
- Results is 3 of a kind
 - xxx y z
 - x, y, z are different values (Ace to King)

Wikipedia: p = 0.02113

Verify using Monte-Carlo techniques

Matlab Code

Shuffle the deck

- Line 8 9
- Draw 5 cards
 - Line 10:
 - Draw the top 5 cards
- Determine suit & value
 - Line 11-12:
- Count frequency of A..K
 - Line 14-17

Success = 3 of a kind

- Line 21:
- N = [3, 1, 1, 0, 0,]

```
% lecture 1: Monte Carlo 5-Card Stud
 1
 2
        % Probability of 3 of a kind
        tic
 3 -
        Pair3 = 0;
 4 -
 5
 6 –
      - for i0 = 1:1e5
 7
        X = rand(1, 52);
 8 -
        [a, Deck] = sort(X);
 9 -
        Hand = Deck(1:5);
10 -
       Value = mod(Hand, 13) + 1;
11 -
        Suit = floor(Hand/13) + 1;
12 -
13
        N = zeros(1, 13);
14 -
      for n=1:13
15 -
            N(n) = sum(Value == n);
16 -
        end
17 -
18
        [N,a] = sort(N, 'descend');
19 -
20
        if ((N(1) == 3)*(N(2) < 2)) Pair3 = Pair3 + 1; end
21 -
22
23 -
        end
24
25 -
        [Pair3]
26 -
        toc
```

Poker Results: 100,000 hands

- Results vary each time you run the code
 - It's a random process
- About 2111 successes each 100,000 hands
- p(x) = 0.02111 ish

From Wikipedia:

• p(x) = 0.02113

```
Command Window
  Pair3 =
           2111
  Elapsed time is 10.900704 seconds.
  Pair3 =
           2109
  Elapsed time is 10.724140 seconds.
  Pair3 =
           2113
  Elapsed time is 10.952154 seconds.
f_{x} >>
```

Summary

A random process is

- Repeatable
- The results are different each time

Probability is

- The ratio (success / trials)
- As the number of trials goes to infinity

Monte-Carlo simulations can approximate this

- Results will vary each time you run the simulation
- Gets more accurate as the number of trials goes to infinity