
Geometric Distribution

ECE 341: Random Processes
Lecture #8

note:  All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com



Geometric Distribution

The number of Bernoulli trials until you get a success

# die rolls until you get a 1

# times you do the dishes until someone notices

# of car trips you tke until something fails

# of days until you make a mistake at work your boss notices

etc
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pdf / mgf / mean / variance
Distribution description pdf mgf mean variance

Bernoulli trial flip a coin
obtain m heads
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Geometric Distribution:

A geometric distribution is one where you conduct a Bernoulli trial (think: flip
a coin) until you get a success.  

pdf:

f(k) = p qk−1 u(k − 1)

where 'p' is the probability of a success and k is the number of flips it takes
before you get a success.



Example:  Toss a coin.

p(success) = p

f(0) = 0

f(1) = p

f(2) = p q

f(3) = p q2

f(4) = p q3

etc.



Geometric with p = 0.9

f(k) = (0.9) (0.1)k−1 u(k − 1)

mean = 1.111

variance = 0.123
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Geometric with p = 0.5

f(k) = (0.5) (0.5)k−1 u(k − 1)

mean = 2.00

variance = 2.000
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Geometric with p = 0.2

f(k) = (0.2) (0.8)k−1 u(k − 1)

mean = 5.00

variance = 20.000
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Note that for a geometric distribution, the probability of a success for each
toss is the same.  Examples of this would be:

Tossing a coin until you get a heads

Betting on 10-black in Roulette until you finally win

Buying a lottery ticket each week until you finally win

Trying to open a door with n keys where you replace the key after each trial and try again
(and again and again..)   This is called sampling with replacement.



Mean and Variance (take 1)

Mean for a Geometric Distribution:

µ = Σ
k=1

∞

k ⋅ p ⋅ qx−1

µ = p(1 + q + 2q2 + 3q3 + 4q4 + ...)

Variance for a Geometric Distribution:

σ2 = Σ
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∞

(k − µ)
2

⋅ p ⋅ qk−1

You can kind of see that we need a better tool. 



Moment Generating Function

The time-series (where m means time) is

x(k) = q ⋅ x(k − 1)

x(1) = p

Taking the z-transform

x(k) = q ⋅ x(k − 1) + p δ(k − 1)

X = q z−1X + p z−1

Solve for X

(z − q)X = p
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Moments

Moment generating functions are useful for generating moments

These allow you to compute the mean and standard deviation.

Zeroth Moment: (valid pdf)  

m0 = ψ(z)z=1

for this to be a valid distributionm0 = 1

1st Moment (mean)

m1 is the mean of the pdfm1 = −ψ (z)z=1

2nd Moment

m2 = ψ (z)z=1

Variance

σ2 = m2 − m1 − m1
2



Example #1:  y(k) = δ(k − 4)

ψ(z) = 1

z4

Zeroth moment

m0 = ψ(z = 1) = 1

1st Moment

ψ (z) = −4

z5

m1 = −ψ (z)z=1 = 4

2nd Moment

ψ (z) = 20

z6

m2 = ψ (z = 1) = 20

σ2 = m2 − m1 − m1
2 = 0
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Example: 6-sided die

ψ(z) = 1
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m1 = −ψ (z = 1) = 3.500
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m2 = 112

6

σ2 = m2 − m1 − m1
2 = 2.91667
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Example: Geometric Distribution
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Matlab Example:  

Toss a die until you roll a 6  (p = 1/6).  

Determine the mean and standard deviation after 10,000 games

N = 1e5;
X = zeros(100,1);
p = 1/6;
q = 1-p;
 
for i=1:N
 
   n = 1;
 
   while(rand > p)
       n = n + 1;
   end
 
   X(n) = X(n) + 1;
end



 
X = X / N;
 
M = [1:100]';
x = sum(M .* X);
s2 = sum(X .* (M-x).*(M-x));
  
disp([x,1/p])
disp([s2,q/(p*p)])
 

       Sim        Calc
x      6.0179    6.0000
var   30.0712   30.0000



pdf and cdf:

The pdf is the probability of k tosses
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The cdf is the integral (sum) of the pdf from 0 to x:  
cdf = 0*X;
for i=1:length(cdf)
   cdf(i) = sum(pdf(1:i));
   end
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Experimental cdf for a geometric distribution



The cdf is a more useful way of generating x

Pick a random number in the interval of (0, 1)

This is the y-coordinate

Find the corresponding x
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Finding the cdf using z-transforms

cdf is the integral of the pdf:

cdf = pdf ⋅ 
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Solving backwards

x = ceil
ln(1−cdf)

ln(q)



To find x:

Pick a random number in the range of (0, 1)

Convert to x using the above formula



Gauss' Dilemma:

This is a game which

No-one will play because you (almost) always lose, and

No-one will offer because the expected winnings are infinite.

Pay some amount, like $100 to play.  

Start with $1 in the pot.

Toss a coin.  If it comes up tails, double the pot.

Keep playing until the coin comes up heads.  

Once that happens, the game ends and you collect your winnings.



This is a geometric distribution with the probability density function being
# Tosses (m) 1 2 3 4 5 6

Probability (p) 1/2 1/4 1/8 1/16 1/32 1/64

Pot (x) 1 2 4 8 16 32

The expected winnings are the cost to play (-$100) plus the sum of the pots
times their probabilities:

E = Σ p(m) ⋅ x(m) − 100

E = 1

2
+ 1

2
+ 1

2
+ 1

2
+ ... − 100

E = ∞

With infinite expected winnings, this sounds like a good game to play.



Monte-Carlo Simulation

N = 10;
Winnings = 0;
p = 0.5;
 
for i=1:N
 
   Pot = 1;
   
   while(rand > p)
       Pot = Pot * 2;
   end
 
   Winnings = Winnings + Pot - 100;
end
 
Winnings / N

-98.2

Each time you play, you lose on average $98.2



Play the game 1000 times and you lose $95 each time you play (meaning
you're now down $95,000):

Winnings / N  =  -95.0180

Play 1 million times, and you're down $89 each time you play (meaning
you're down $89 million)

Winnings / N  =  -89.7185

Likewise, it's a really bad game to play.  With an expected winnings of
infinity, it's also a really bad game to offer.

Hence the name Gauss' Dilemma



Summary

Geometric distributions describe events where you continue playing until an
event happens

Toss a die until you roll a one

Keep plugging away until your boss notices you

Keep going to parties until you get Covid

Moment Generating Functions are useful for finding

The mean (1st moment)

The variance 

Cumulative Density Functions (cdf's) are useful for coverting a probability to
a number


