Markov Chains

ECE 341: Random Processes

Lecture #20

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

A and B play a match

Problem 1: Two teams, A and B, are playing a match

- A has a 70% chance of winning any given game
- The first team to win 3 games wins the match.

This is a binomial distribution

Problem 2: Two teams, A and B, are playing a match

- A has a 70% chance of winning any given game
- The first team to win **by** 3 games wins the match.

This is a *totally* different problem.

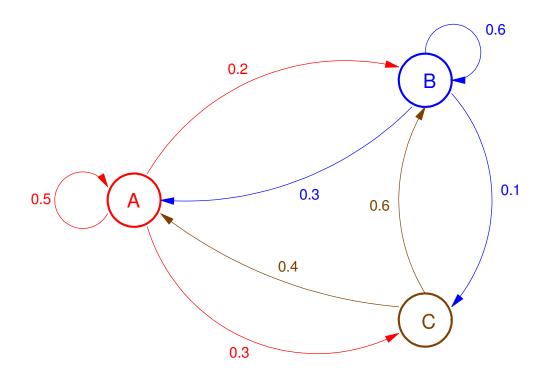
Problem #2 is an infinite sequence

• To solve, we need a different tool: Markov chains.

Markov Chain

A Markov chain is a discrete-time probability function where

- X(k) is the state of the system at time k, and
- X(k+1) = A X(k)

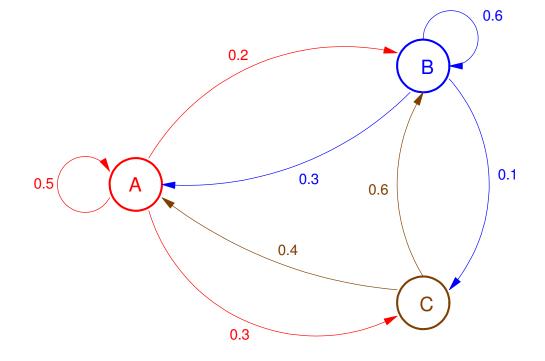


Three people, A, B, and C, are playing ball. Every second they pass the ball at random:

- When A has the ball, he/she
 - Keeps the ball 50% of the time
 - Passes it to B 20% of the time, and
 - Passes it to C 30% of the time
- When B has the ball, he/she
 - Passes it to A 30% of the time
 - Keeps it 60% of the time, and
 - Passes it to C 10% of the time
- When C has the ball, he/she
 - Passes it to A 40% of the time, and
 - Passes it to B 60% of the time.

Assume at t=0, A has the ball.

- What is the probability that B will have the ball after k tosses?
- After infinite tosses?



This lecture covers three different methods to analyze problems of this sort:

- Matrix multiplication
- Eigenvalues and Eigenvectors, and
- z-Transforms.

Solution #1: Matrix Multiplication

Let X(k) be the probability that A, B, and C have the ball at time k:

$$x(k) = \begin{bmatrix} p(a) \\ p(b) \\ p(c) \end{bmatrix}$$

Then from the problem statement, X(k+1) is related to X(k) by a state-transition matrix:

$$x(k+1) = \begin{bmatrix} 0.5 & 0.3 & 0.4 \\ 0.2 & 0.6 & 0.6 \\ 0.3 & 0.1 & 0 \end{bmatrix} x(k) = A \ x(k) \qquad x(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Note that

- The columns are the probabilities in the above problem statement, and
- The columns must add up to 1.000 (all probabilities add to one)

The probability of each player having the ball after 1, 2, 3 tosses is (using Matlab)

A = [0.5, 0.2, 0.3; 0.3, 0.6, 0.1; 0.4, 0.6, 0]

0.5000

0.3000

0.4000

0.2000

0.6000

0.6000

0.3000

0.1000

(

X = [1; 0; 0]

% k = 0

1.0000

0.0000

0.0000

X = A * X

% k = 1

0.5000

0.2000

0.3000

X = A * X

% k = 2

0.4300

0.4000

0.1700

$$X = A * X$$

$$% k = 3$$

- 0.4030
- 0.4280
- 0.1690

time passes

$$X = A * X$$

- 0.3953
- 0.4419
- 0.1628

Eventually X quits changing. This is the steady-state solution.

Steady-State Solution:

If you want to find the steady-state solution, you can simply raise A to a large number (like 100) and solve in one shot:

```
X0 = [1;0;0]

1
0
0

X20 = A^100 * X0

0.3953
0.4419
0.1628
```

You can also solve for the steady-state solution by finding x(k) such that

$$x(k+1) = x(k) = A x(k)$$

Solving:

$$(A - I)x(k) = 0$$

$$\left(\begin{bmatrix} 0.5 & 0.3 & 0.4 \\ 0.2 & 0.6 & 0.6 \\ 0.3 & 0.1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

$$\begin{bmatrix} -0.5 & 0.3 & 0.4 \\ 0.2 & -0.4 & 0.6 \\ 0.3 & 0.1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0$$

Assume c = 1

$$\begin{bmatrix} -0.5 & 0.3 \\ 0.2 & -0.4 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = -\begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}$$

$$ab = -inv([-0.5, 0.3; 0.2, -0.4]) * [0.4; 0.6]$$

$$2.4286$$

$$2.7143$$

$$X = [ab; 1]$$

$$2.4286$$

$$2.7143$$

$$1.0000$$

$$X = X / sum(X)$$

$$0.3953$$

$$0.4419$$

$$0.1268$$

which is the same answer we got before.

Solution #2: Eigenvalues and Eigenvectors

The problem we're trying to solve is

$$x(k+1) = A \ x(k)$$

$$x(0) = X_0$$

This is actually an eigenvalue / eigenvector problem.

- Eigenvalues tell you how the system behaves,
- Eigenvectors tell you what behaves that way.

Since this system has three states, the generalized solution for x(k) will be:

$$x(k) = a_1 \Lambda_1 \lambda_1^k + a_2 \Lambda_2 \lambda_2^k + a_3 \Lambda_3 \lambda_3^k$$

where

- λ_i is the ith eigenvalue,
- Λ_i is the ith eigenvector, and
- a_i is a constant depending upon the initial condition.

At k = 0:

$$x(0) = \left[\Lambda_1 \Lambda_2 \Lambda_3 \right] \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

The excitation of each eigenvector is then

meaning

$$x(k) = 0.6149 \begin{bmatrix} 0.6430 \\ 0.7186 \\ 0.2468 \end{bmatrix} (1)^{k} + 0.5482 \begin{bmatrix} 0.2222 \\ 0.5693 \\ -0.7915 \end{bmatrix} (-0.1562)^{k} + 0.9543 \begin{bmatrix} 0.5151 \\ -0.8060 \\ 0.2989 \end{bmatrix} (0.2562)^{k}$$

or adding the scalars to the eigenvectors:

$$x(k) = \begin{bmatrix} 0.3953 \\ 0.4419 \\ 0.1628 \end{bmatrix} (1)^{k} + \begin{bmatrix} 0.1218 \\ 0.3121 \\ -0.4339 \end{bmatrix} (-0.1562)^{k} + \begin{bmatrix} 0.4828 \\ -0.7539 \\ 0.2711 \end{bmatrix} (0.2562)^{k}$$

As k goes to infinity, the first eigenvector is all that remains.

Steady-State Solution using Eigenvectors

Note that the steady-state solution is simply the eigenvector associated with the eigenvalue of 1.000.

Scale so the total is 1.0000

```
X = M(:,1);

X = X / sum(X)

0.3953

0.4419

0.1628
```

Same answer as before.

Solution #3: z-Transforms

Again, the problem we are trying to solve is

$$x(k+1) = \begin{bmatrix} 0.5 & 0.3 & 0.4 \\ 0.2 & 0.6 & 0.6 \\ 0.3 & 0.1 & 0 \end{bmatrix} x(k) \qquad x(0) = X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

This can be written as

$$x(k) = A x(k-1) + X_0 \delta(k)$$

 $x(k+1) = A x(k) + X_0 \delta(k+1)$

Take the z-transform

$$zX = AX + zX_0$$

To determine the probability that B has the ball at time k, look at the second state

$$Y = CX = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} X$$

Solving for Y then gives the z-transform for b(k)

$$zX = AX + zX_0$$

$$(zI - A)X = zX_0$$

$$X = z(zI - A)^{-1}X_0$$

$$Y = CX = z C(zI - A)^{-1}X_0$$

$$Y = z C(zI - A)^{-1}X_0$$

For our 3x3 example,

$$Y(z) = z \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} z & 0 & 0 \\ 0 & z & 0 \\ 0 & 0 & z \end{bmatrix} - \begin{bmatrix} 0.5 & 0.3 & 0.4 \\ 0.2 & 0.6 & 0.6 \\ 0.3 & 0.1 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$C$$

$$A$$

$$B = X0$$

This is somewhat painful to compute by hand. Fortunately, there's Matlab to the rescue.

- G = ss(A, B, C, D, T) input a dynamic system into matlab
- Y = tf(G) calculate and express the z-transform of Y in transfer function form
- Y = zpk(G) calculate and express the z-transform of Y in factored form

In matlab:

```
A = [0.5, 0.3, 0.4; 0.2, 0.6, 0.6; 0.3, 0.1, 0]
    0.5000
               0.3000
                         0.4000
                       0.6000
    0.2000 0.6000
    0.3000
              0.1000
X0 = [1; 0; 0]
     0
     0
C = [0, 1, 0]
          1
     0
                  0
Bz = ss(A, X0, C, 0, 1);
```

tf(Bz)

zpk (Bz)

Sampling time (seconds): 1

(recall that you need to multuply by z)

Finding b(k):

$$B(z) = \left(\frac{0.2(z+0.9)z}{(z-1)(z-0.2562)(z-0.1562)}\right)$$

factor out a z and use partial fractions:

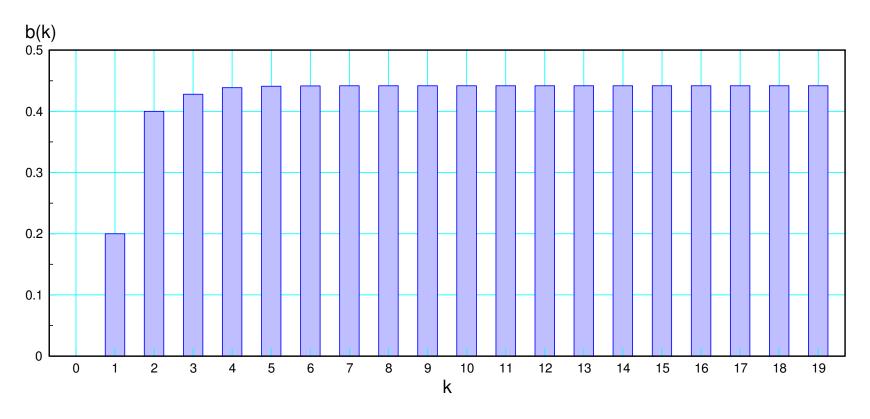
$$B(z) = \left(\left(\frac{0.6054}{z - 1} \right) + \left(\frac{-3.1089}{z - 0.2562} \right) + \left(\frac{2.5034}{z - 0.1562} \right) \right) z$$

multiply by z

$$B = \left(\frac{0.6054z}{z-1}\right) + \left(\frac{-3.1089z}{z-0.2562}\right) + \left(\frac{2.5034z}{z-0.1562}\right)$$

Take the inverse z-transform

$$b(k) = \left(0.6054 - 3.1089(0.2562)^k + 2.5034(0.1562)^k\right)u(k)$$



Probability that player B has the ball after toss k

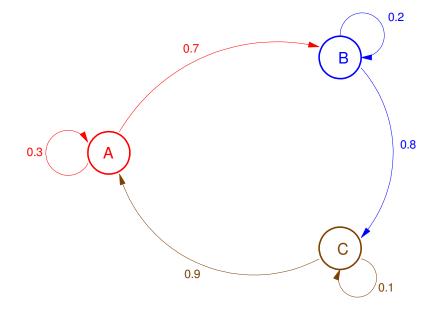
z-Transform with Complex Poles

You can get complex poles. If you do, use entry in the z-transform table:

$$\left(\frac{(a\angle\theta)z}{z-b\angle\phi}\right) + \left(\frac{(a\angle-\theta)z}{z-b\angle-\phi}\right) \to 2a\ b^k\ \cos\left(\phi k - \theta\right)\ u(k)$$

For example, suppose player A, B, and C toss the ball as:

- A keeps the ball 30% of the time and passes it to B 70% of the time
- B keeps the ball 20% of the time and passes it to C 80% of the time, and
- C keeps the ball 10% of the time and passes it to A 90% of the time



Suppose A starts with the ball at k = 0. Determine the probability that B has the ball after k tosses.

Solving using z-transforms: express in matrix form

$$zX = \begin{bmatrix} 0.3 & 0 & 0.9 \\ 0.7 & 0.2 & 0 \\ 0 & 0.8 & 0.1 \end{bmatrix} X \quad X(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$Y = p(B) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} X$$

Find B(z) using Matlab

```
A = [0.3, 0, 0.9; 0.7, 0.2, 0; 0, 0.8, 0.1]
    0.3000
                        0.9000
    0.7000 0.2000
         0 0.8000 0.1000
X0 = [1;0;0];
C = [0, 1, 0];
Bz = ss(A, X0, C, 0, 1);
zpk (Bz)
       0.7 (z-0.1)
(z-1) (z^2 + 0.4z + 0.51)
Sampling time (seconds): 1
(again - multiply by z to get B(z))
```

$$B(z) = \left(\frac{0.7(z-0.1)z}{(z-1)(z-0.7142\angle 106^{\circ})(z-0.7142\angle -106^{\circ})}\right)$$

Pull out a z and expand using partial fractions

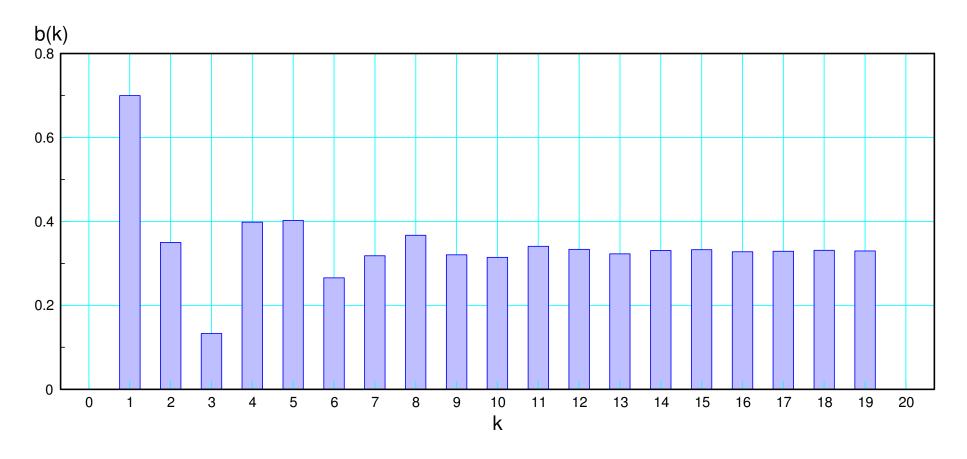
$$B(z) = \left(\left(\frac{0.3298}{(z-1)} \right) + \left(\frac{0.2764\angle -126.8^{\circ}}{(z-0.7142\angle 106^{\circ})} \right) + \left(\frac{0.2764\angle 126.8^{\circ}}{(z-0.7142\angle -106^{\circ})} \right) \right) z$$

Multiply both sides by z

$$B = \left(\frac{0.3298z}{(z-1)}\right) + \left(\frac{z0.2764\angle -126.8^{0}}{(z-0.7142\angle 106^{0})}\right) + \left(\frac{z0.2764\angle 126.8^{0}}{(z-0.7142\angle -106^{0})}\right)$$

Take the inverse z-transform

$$z b(k) = \left(0.3298 + 0.5527(0.7142)^k \cos\left(k \cdot 106^0 + 126.8^0\right)\right) u(k)$$



probability that player B has the ball after k tosses