Student t Distribution with >2 Populations

ECE 341: Random Processes Lecture \#24b

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Student-t Test with One Population

The Student-t Test is designed for a single population

Population	mean	st dev	sample size
A	90.00	10.00	5

What is the chance A scores more than 100 points?
Find the t-score

$$
t=\left(\frac{100-90}{10}\right)=1.00
$$

Use a t-table to convert to a probability

t-Test with Two Populations

Compare two populations: A and B

- What is the chance A wins the next game?
- What is the chance A is the better team?

Solution:

- Create a new variable: $\mathrm{W}=\mathrm{A}-\mathrm{B}$
- You now have a t-test with one population

Population	mean	st dev	df
A	90.00	10.00	5
B	85.00	11.00	6
W A B	5.00	14.87 individual	5 approx

t-Test with >2 Populations

Four people are playing Hungry Hungry Hippo

- What is the chance that A will win the next game?

Population	mean	st dev	df
A	90.00	10.00	5
B	85.00	11.00	6
C	84.00	12.00	3
D	83.00	13.00	7

Option \#1: Create three variables

- $\mathrm{W} 1=\mathrm{A}-\mathrm{B}$
- $\mathrm{W} 2=\mathrm{A}-\mathrm{C}$
- $\mathrm{W} 3=\mathrm{A}-\mathrm{D}$

Population	mean	st dev	df
A	90.00	10.00	5
B	85.00	11.00	6
C	84.00	12.00	3
D	83.00	13.00	7
W1 A B	5.00	14.866	5
W2 A C	6.00	15.620	3
W3 A D	7.00	16.401	5

Find the probability A wins each case

Population	mean	st dev	df	t-Score	p (A Wins)
W1 A - B	5.00	14.866	5	0.3363	0.62485
W2 A - C	6.00	15.620	3	0.3841	0.63641
W3 A - D	7.00	16.401	5	0.4286	0.65697

Multiply all three probabilities together

$$
\begin{aligned}
& \mathrm{p}=\mathrm{p} 1 * \mathrm{p} 2 * \mathrm{p} 3 \\
& \mathrm{p}=0.2613
\end{aligned}
$$

Note: This probabilty is low

- This is actually the odds that A defeats each other play one at a time
- A runs the gauntlet of player B then C then D
- The odds that A wins a single game against three oponents is higher.

Option \#2: Combine B, C, \& D

- A's score is more than the $\max (\mathrm{B}, \mathrm{C}, \mathrm{D})$
- Create a new variable, $\mathrm{F}=\max (\mathrm{B}, \mathrm{C}, \mathrm{D})$

You now have two variables (A \& F)

- Problem has been previously solved

Game	Player A	$\max (\mathrm{B}, \mathrm{C}, \mathrm{D})$	Player B	Player C	Player D	
1	95	95	89	95	89	
2	95	98	98	80	76	
3	73	103	93	80	103	
4	89	82	76	82	64	
5	86	86	86	66	84	
6	101	100	68	100	82	
mean	89.8333	94.00				
st dev	9.7656	8.2704				

The probability of A winning any given game is then

$$
t=\left(\frac{x_{a}-x_{f}}{\sqrt{s_{a}^{2}+s_{f}^{2}}}\right)=-0.3256
$$

6 games means 5 degrees of freedom

$$
\mathrm{p}=0.37896
$$

Player A has a 37.896% chance of winning any given game

- vs. 26.13% if A had to run the gauntlet

Option \#3

Run a Monte-Carlo simulation to find the pdf for $\max (\mathrm{B}, \mathrm{C}, \mathrm{D})$

```
>> B = 11*randn (1000,1) + 85;
>> C = 12*randn (1000,1) + 84;
>> D = 13*randn (1000,1) + 83;
>> F = max([B,C,D]')';
>> Xf = mean(F)
Xf = 94.2967
>>Sf = std(F)
Sf = 8.8662
```


Option \#4: Run a Monte-Carlo Simulation

```
Wins = 0;
for n=1:1e5
    A = 10*randn + 90;
    B = 11*randn + 85;
    C = 12*randn + 84;
    D = 13*randn + 83;
    if(A > max([B,C,D])) Wins = Wins + 1; end
end
Wins / 1e5
>> ans = 0.3810
```

A has a 38.10% chance of winning any given game

Option \#5: ANOVA

Student t-Tests are just one type of statistical test

- Assumes a single population
- You can play with the data to make it work with 2 populations

There are statistical tests design for more than 2 populations

- Analysis of Variance is one such test
- Coming soon...

Summary

With a t-test, you can compare two populations

- Create a new variable, $\mathrm{W}=\mathrm{A}-\mathrm{B}$
- Determine the probability that $\mathrm{W}>0$

Only really works with two populations

- If you have more than two populations, you need a different tool
- ANOVA is one such tool (upcoming....)

