## ECE 343 - Homework \#5

## Complex Fourier Transform - Summer 2018

Assume all functions are periodic in $2 \pi$

$$
\begin{aligned}
& x(t)=x(x+2 \pi) \\
& \omega_{0}=\frac{2 \pi}{T}=1
\end{aligned}
$$

Express the Fourier transform as

$$
x(t)=c_{0}+\sum c_{n} e^{j n t}
$$

1) Find the complex Fourier transform for

$$
x(t)=\left\{\begin{array}{lc}
1 & 0<t<1 \\
0 & 1<t<2 \pi
\end{array}\right.
$$

Plot $\mathrm{x}(\mathrm{t})$ along with its Fourier approximation taken out to the 20th harmonics
2) Use Matlab to find en using numerical methods. Compare your numerical solution with what you got for problem \#1
3) Find the complex Fourier transform for

$$
x(t)=\left\{\begin{array}{cc}
t & 0<t<1 \\
0 & 1<t<2 \pi
\end{array}\right.
$$

Plot $\mathrm{x}(\mathrm{t})$ along with its Fourier approximation taken out to the 20th harmonics
4) Use Matlab to find cn using numerical methods. Compare your numerical solution with what you got for problem \#2

