ECE 343 - Homework \#16

Circuit Analysis using LaPlace Transforms - Summer 2018

Problem 1-3) Assume $\operatorname{Vo}(\mathrm{t})=0$.

Problem 1: Assume v1 $(0)=\mathrm{v} 2(0)=\mathrm{v} 3(0)=10 \mathrm{~V}$.

- Write the dynamics for this system (i.e. the voltage node equations using LaPlace notation
- Place in matrix form
- Find v3(t) (Matlab graph of v3 vs. time)

Problem 2: Assume v3 $(0)=10$.

- What initial coniditons on $\mathrm{v} 1(0)$ and $\mathrm{v} 2(0)$ result in $\mathrm{v} 3(\mathrm{t})$ decaying as slow as possible?
- Find V3(t) for these initial coniditons.

Problem 3: Assume v3 $(0)=10$.

- What initial coniditons on $\mathrm{v} 1(0)$ and $\mathrm{v} 2(0)$ result in $\mathrm{v} 3(\mathrm{t})$ decaying as fast as possible?
- Find $\mathrm{v} 3(\mathrm{t})$ for these initial coniditons.

Problem 4-6: Assume vin $(\mathrm{t})=0$.

Problem 4: Assume

- $\mathrm{i} 1(0)=\mathrm{i} 2(0)=\mathrm{i} 3(0)=2 \mathrm{~A}$.
- $\mathrm{v} 4(0)=10 \mathrm{~V}$.
i) Write the dynamics for this system (i.e. the voltage node equations using LaPlace notation
ii) Place in matrix form
iii) Find v4(t) (Matlab graph of v4 vs. time)

Problem 5: Assume v4(0) = 10 .

- What initial coniditons on $\mathrm{i} 1(0), \mathrm{i} 2(0)$, and $\mathrm{i} 3(0)$ result in $\mathrm{v} 4(\mathrm{t})$ decaying as slow as possible?
- Find $v 4(t)$ for these initial coniditons.

Problem 6: Assume v4(0) = 10 .

- What initial coniditons on $\mathrm{i} 1(0), \mathrm{i} 2(0)$, and $\mathrm{i} 3(0)$ result in $\mathrm{v} 4(\mathrm{t})$ decaying as fast as possible?
- Find $\mathrm{v} 4(\mathrm{t})$ for these initial coniditons.

