Introduction

Background

Assume you have a system with an input, X , and an output, Y .

The relationship between the input and output can be written mathematically as

$$
Y=G \cdot X
$$

If the input and output are related by a scalar, this is called a static system. For example, if you have a voltage divider with $\mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k}$, the relationship between the input and output is

$$
y=\frac{1}{2} x
$$

For this circuit

- If $x(t)$ is a sine wave, $y(t)$ is also a sine wave that's $1 / 2$ of the amplitude of the input.
- If $x(t)$ is a square wave, $y(t)$ is also a square wave that's $1 / 2$ of the amplitude of the input.

You can verify this in PartSim:

In contrast, if the circuit contains capacitors or integrators, the relationship between x and y is no longer so simple. For example, if you use an RC filter with a square wave input, the output looks like the following (from PartSim)

This circuit is a dynamic system: you need to use a differential equation to describe the relationship between the input and output. This is due to the VI relationship being

$$
v=L \frac{d i}{d t}
$$

for an inductor and

$$
i=C \frac{d v}{d t}
$$

for a capacitor.

This class, Signals and Systems, looks at how to solve for the output of a dynamic system where the input is known. The tool used to find the output, $y(t)$, depends upon what the input, $x(t)$, looks like. Four different tools are presented herein:

Case 1: Phasor Analysis

$$
x(t)=a \cdot \cos (\omega t)
$$

$$
-\infty<t<\infty
$$

- $\mathrm{x}(\mathrm{t})$ is a sine wave or a sum of sine waves.
- $\mathrm{x}(\mathrm{t})$ has been around since $t=-\infty$ meaning you only care about the steady-state solution (initial conditions don't matter).

Case 2: Fourier Transform

$$
x(t)=x(t+T)
$$

$$
-\infty<t<\infty
$$

- $\mathrm{x}(\mathrm{t})$ is periodic in time T .
- $\mathrm{x}(\mathrm{t})$ has been around since $t=-\infty$ meaning you only care about the steady-state solution (initial conditions don't matter).

Case 3: LaPlace Transform (zero initial conditions)

$$
x(t)=\left\{\begin{array}{cc}
f(t) & t>0 \\
0 & \text { othewise }
\end{array}\right.
$$

- $\mathrm{x}(\mathrm{t})$ turns on at $\mathrm{t}=0$.
- Initial conditions are zero since $\mathrm{x}(\mathrm{t})$ was zero for a long time prior to $\mathrm{t}=0$

LaPlace Transforms (non-zero initial conditions)

$$
\begin{array}{ll}
x(t)=f(t) \quad t>0 \\
y(t=0)=y_{0} &
\end{array}
$$

Most dynamic systems do not have memory: they don't care how you got to $t=0$. All they care about is what that initial condition is.

Case 4: z-Transform.

$$
t=k T
$$

where T is the sampling rate (such as 10 ms) and k is the sample number. The input and output will then be

$$
\begin{aligned}
& x(t)=x(k T)=x(k) \\
& y(t)=y(k T)=y(k)
\end{aligned}
$$

Calculus I and II Review

Suppose you have a system which is described by a differential equation

$$
\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 x
$$

Find $\mathrm{y}(\mathrm{t})$ assuming

$$
x(t)=5
$$

In Calculus, the method you learned was to

- Guess the form of $y(t)$
- Plug in $\mathrm{y}(\mathrm{t})$ into the differential equation
- Solve for the unknown.

Since $x(t)$ is a constant, assume $y(t)$ is in the same form (i.e. a constant)

$$
y=a
$$

along with

$$
\begin{aligned}
& \frac{d y}{d t}=0 \\
& \frac{d^{2} y}{d t^{2}}=0
\end{aligned}
$$

Plugging these into the differential equation results in

$$
\begin{aligned}
& 0+0+2 a=4 \cdot 5 \\
& a=10
\end{aligned}
$$

and your solution is

$$
y(t)=10
$$

If

$$
x(t)=5 e^{-4 t}
$$

then assume $\mathrm{y}(\mathrm{t})$ is in the same form:

$$
y(t)=a e^{-4 t}
$$

This results in

$$
\begin{aligned}
& \frac{d y}{d t}=-4 a e^{-4 t} \\
& \frac{d^{2} y}{d t^{2}}=16 a e^{-4 t}
\end{aligned}
$$

Substituting back into the differential equations results in

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 x \\
& \left(16 a e^{-4 t}\right)+3\left(-4 a e^{-4 t}\right)+2\left(a e^{-4 t}\right)=4\left(5 e^{-4 t}\right)
\end{aligned}
$$

Canceling the $e^{-4 t}$ terms results in

$$
\begin{aligned}
& 16 a-12 a+2 a=20 \\
& a=2.5
\end{aligned}
$$

and

$$
y(t)=2.5 \cdot e^{-4 t}
$$

If $\mathrm{x}(\mathrm{t})$ is a sine wave

$$
x(t)=4 \cos (5 t)
$$

then assume $y(t)$ is of the form

$$
y(t)=a \cos (5 t)+b \sin (5 t)
$$

The derivatives of $\mathrm{y}(\mathrm{t})$ are

$$
\begin{aligned}
& \frac{d y}{d t}=-5 a \sin (5 t)+5 b \cos (5 t) \\
& \frac{d^{2} y}{d t^{2}}=-25 a \cos (5 t)-25 b \sin (5 t)
\end{aligned}
$$

Substituting into the differential equation:

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y=4 x \\
& (-25 a \cos (5 t)-25 b \sin (5 t))+3(-5 a \sin (5 t)+5 b \cos (5 t))+2(a \cos (5 t)+b \sin (5 t))=4(4 \cos (5 t))
\end{aligned}
$$

Grouping terms

$$
(-25 a+15 b+2 a) \cos (5 t)+(-25 b-15 a+2 b) \sin (5 t)=16 \cos (5 t)+0 \sin (5 t)
$$

This gives 2 equations for 2 unknowns

$$
\begin{array}{ll}
-23 a+15 b=16 & \cos () \text { terms } \\
-23 b-15 a=0 & \sin () \text { terms }
\end{array}
$$

Solving

$$
\begin{aligned}
a & =-0.4880 \\
b & =0.3183
\end{aligned}
$$

meaning

$$
y(t)=-0.4880 \cos (5 t)+0.3183 \sin (5 t)
$$

Note that for sinusoidal inputs, you wind up solving 2 equations for 2 unknowns.

