Circuit Analysis with Phasors

With phasors, you can also analyze electrical circuits. For a resistor

$$
V=I R
$$

For an inductor

$$
V=L \frac{d I}{d t}
$$

Using phasors, differentiation becomes multiplication by jw

$$
V=(j \omega L) I
$$

so inductors look like resistors with an impedance of jwL. For a capacitor

$$
\begin{aligned}
& I=C \frac{d V}{d t} \\
& I=C j \omega V \\
& V=\left(\frac{1}{j \omega C}\right) I
\end{aligned}
$$

Capacitors look like resistors with an impedance of $\left(\frac{1}{j \omega C}\right)$. Using this we can analyze AC circuits just like we analyze DC circuits, only with complex numbers. In summary

Component	Impedance	Impedance
Input	e^{st}	$\mathrm{e}^{\mathrm{jwt}}$
R	R	R
L	Ls	jwL
C	$1 / \mathrm{Cs}$	$1 / \mathrm{jwC}$

For example, find the votlages for the following circuit (EE 206 example: DC circuit)

Using voltage nodes, the nodal equations would be

$$
\begin{aligned}
& \left(\frac{V_{1}-10}{10}\right)+\left(\frac{V_{1}}{30}\right)+\left(\frac{V_{1}-V_{2}}{20}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{20}\right)+\left(\frac{V_{2}}{40}\right)=0
\end{aligned}
$$

Grouping terms

$$
\begin{aligned}
& \left(\frac{1}{10}+\frac{1}{30}+\frac{1}{20}\right) V_{1}-\left(\frac{1}{20}\right) V_{2}=\left(\frac{1}{10}\right) 10 \\
& \left(\frac{1}{20}+\frac{1}{40}\right) V_{2}-\left(\frac{1}{20}\right) V_{1}=0
\end{aligned}
$$

Placing in matrix form

$$
\left[\begin{array}{cc}
\left(\frac{1}{10}+\frac{1}{30}+\frac{1}{20}\right) & \left(\frac{-1}{20}\right) \\
\left(\frac{1}{20}\right) & \left(\frac{1}{20}+\frac{1}{40}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{10}{10}\right) \\
0
\end{array}\right]
$$

Solving 2 equations for 2 unknowns in Matlab:

```
-->A = [1/10+1/30+1/20,-1/20; -1/20,1/20+1/40]
    0.1833333-0.05
    -0.05 0.075
-->B = [1;0]
    1.
    0.
-->inv(A)*B
V1 6.6666667
V2 4.4444444
```

Now find the voltages for the following circuit

Step 1: Convert to phasor notation. The input becomes

$$
4 \sin (5 t) \rightarrow 0-j 4
$$

The resistors remain uncanged. The inductors become

$$
L \rightarrow j \omega L
$$

where ω is $5 \mathrm{rad} / \mathrm{sec}$. The capacitors become

$$
C \rightarrow \frac{1}{j \omega C}
$$

This results in

Now write the voltage node equations just like before

$$
\begin{aligned}
& \left(\frac{V_{1}-(-j 4)}{10+j 2.5}\right)+\left(\frac{V_{1}}{-j 20}\right)+\left(\frac{V_{1}-V_{2}}{20+j 1}\right)=0 \\
& \left(\frac{V_{2}-V_{1}}{20+j 1.0}\right)+\left(\frac{V_{2}}{-j 10}\right)=0
\end{aligned}
$$

Group terms

$$
\begin{aligned}
& \left(\frac{1}{10+j 2.5}+\frac{1}{-j 20}+\frac{1}{20+j 1}\right) V_{1}-\left(\frac{1}{20+j 1}\right) V_{2}=\left(\frac{-j 4}{10+j 2.5}\right) \\
& \left(\frac{-1}{20+j}\right) V_{1}+\left(\frac{1}{20+j}+\frac{1}{-j 10}\right) V_{2}=0
\end{aligned}
$$

Place in matrix form

$$
\left[\begin{array}{cc}
\left.\left.\left(\begin{array}{cc}
\left.\frac{1}{10+j 2.5}+\frac{1}{-j 20}+\frac{1}{20+j 1}\right) & \left(\frac{-1}{20+j 1}\right) \\
\left(\frac{-1}{20+j 1}\right) & \left(\frac{1}{20+j}+\frac{1}{-j 10}\right)
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{-j 4}{10+j 2.5}\right) \\
0
\end{array}\right]\right] .\right] ~
\end{array}\right]
$$

Solve in Matlab

```
-->a11 = 1/(10+j*2.5)-1/(j*20)+1/(20+j);
-->a12 = -1/(20+j);
-->a21 = -1/(20+j);
-->a22 = 1/(20+j) + 1/(-j*10);
```

```
-->A = [a11, a12 ; a21, a22]
    0.1439930 + 0.0239768i - 0.0498753 + 0.0024938i
    -0.0498753 + 0.0024938i 0.0498753 + 0.0975062i
-->B = [-j*4/(10+j*2.5) ; 0]
    -0.0941176 - 0.3764706i
-->V = inv(A)*B
V1 - 1.4559151 - 2.2895748i
V2 - 1.2244227 + 0.1769673i
```

meaning

$$
\begin{aligned}
& V_{1}(t)=-1.4559 \cos (5 t)+2.289 \sin (5 t) \\
& V_{2}(t)=-1.224 \cos (5 t)-0.176 \sin (5 t)
\end{aligned}
$$

Example 3) Voltage Division

Everything we did in EE 206 for DC analysis also works for AC circuits - only with complex numbers. For example, use voltage division to find $\mathrm{y}(\mathrm{t})$:

First, convert to phaser notation. For this forcing function, $x(t)$,

$$
s=j 100
$$

Change the input to phaser notation:

$$
X=4 \angle 20^{\circ}
$$

Change RLC to phaser impedances:
$\begin{aligned} R & \rightarrow R=200 \Omega \\ L & \rightarrow L s=j 2 \Omega\end{aligned}$

$$
C \rightarrow \frac{1}{C s}=-j \Omega
$$

Now, solve using voltage division:

$$
\begin{aligned}
& Y=\left(\frac{-j}{200+2 j-j}\right) \cdot 4 \angle 20^{0} \\
& Y=0.02 \angle-70.3^{0} \\
& y(t)=0.02 \cos \left(100 t-70.3^{0}\right)
\end{aligned}
$$

Note that these answers were much easier to obtain than before.

Example 4: Op-Amp Circuits

Find $y(t)$:

First. convert to phaser notation. In this case, $s=j 1000$

Next, write the voltage node equations:
A $\quad\left(\frac{A-4}{1000}\right)+\left(\frac{A-Y}{-j 1000}\right)+\left(\frac{A-B}{1000}\right)=0$
V- $\quad\left(\frac{B-A}{1000}\right)+\left(\frac{B-0}{-j 1000}\right)=0$
$\mathrm{V}+\left(\frac{B-0}{1000}\right)+\left(\frac{B-Y}{1000}\right)=0$

Note that you can't write a voltage node equation at Y. The op-amp puts out whatever current it takes to force V$=\mathrm{V}+$. Since you don't know this current, you can't sum the currents to zero. The fourth equation already incorporated in the above three is

$$
V^{+}=V^{-}
$$

To make the numbers nicer, lets scale all three equations by 1000 and group terms:
A $\quad(2+j) A+(-j) Y+(-1) B=4$
V- $\quad(-1) A+(0) Y+(1+j) B=0$
$\mathrm{V}+(0) A+(-1) Y+(2) B=0$

Solving three equations for three unknowns (again using MATLAB):

$$
\begin{aligned}
& -->W=[2+j,-j,-1 ;-1,0,1+j ; 0,-1,2] \\
& W=
\end{aligned}
$$

```
    2. + i - - i rr - 1. 
    -->inv(W)*[4;0;0]
    ans =
Va 4. - 4.i
Vy - 8.i
Vb - 4.i
```

The way I set up the problem, Y was the second column in the $3 x 3$ matrix. Likewise, Y will be the second entry in the answer:

$$
Y=-j 8
$$

and

$$
y(t)=8 \sin (1000 t)
$$

