Fourier Transform

Background:

Suppose you have a filter with an input X and a transfer function $\mathrm{G}(\mathrm{jw})$:

$$
Y=G(j \omega) \cdot X
$$

If $x(t)$ is a sinusoid at frequency ω, $y(t)$ will also be a sinusoid at frequency ω. $y(t)$ is related to $x(t)$ by the gain, gain, G, evaluated at $s=j \omega$.

If $x(t)$ is composed of several sine waves, you can use superposition. The output, $y(t)$ will be the sum of each input times its corresponding gain.
Example: Find $y(t)$ for

$$
\begin{aligned}
& Y=\left(\frac{20}{(j \omega+2)(j \omega+5)}\right) X \\
& x(t)=1+2 \sin (3 t)+4 \sin (5 t)
\end{aligned}
$$

Solution: Solve three different problems.

$\mathrm{x}(\mathrm{t})$	jw	$\mathrm{G}(\mathrm{s})$	$\mathrm{y}(\mathrm{t})$
1	$\mathrm{jw}=0$	$G(0)=2$	2
$2 \sin (3 t)$	$\mathrm{jw}=\mathrm{j} 3$	$G(j 3)=0.95 \angle-87^{0}$	$2 \cdot 0.95 \sin \left(3 t-87^{0}\right)$
$4 \sin (5 t)$	$\mathrm{jw}=\mathrm{j} 5$	$G(j 5)=0.52 \angle-113^{0}$	$4 \cdot 0.52 \sin \left(5 t-113^{0}\right)$

$\mathrm{y}(\mathrm{t})$ will be the sum of all three terms (by superposition)

$$
y(t)=2+1.0 \sin \left(3 t-87^{0}\right)+2.1 \sin \left(5 t-113^{0}\right)
$$

Note that this only works if the input is composed of sinusoids.

Fourier Transform

Assume instead that the input is periodic in time T:

$$
x(t)=x(t+T)
$$

For example, a $10 \mathrm{rad} / \mathrm{sec}$ square wave would be

$$
x(t)=\left\{\begin{array}{cc}
1 & \sin (10 t)>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Since $\sin (10 \mathrm{t})$ is periodic in $0.2 \pi, \mathrm{x}(\mathrm{t})$ is periodic in 0.2π

$$
x(t)=x(t+0.2 \pi)
$$

Find $\mathrm{y}(\mathrm{t})$. Presently, the tools we have don't work for this problem: $\mathrm{x}(\mathrm{t})$ isn't a sine wave.

The solution is typical of engineering solutions:

- Given a difficult problem you can't solve, change the problem to one you can solve.

We know how to solve differential equations when the input is sinusoidal or a sum of sinusoids. Change this problem to a sum of sinusoids.

$$
x(t) \approx \sum_{i} a_{i} \cos \left(\omega_{i} t\right)+b_{i} \sin \left(\omega_{i} t\right)
$$

Since $\mathrm{x}(\mathrm{t})$ is periodic in time T , it is reasonable to assume that all sine and cosine terms will also be periodic in time T. Adding this requirement results in

$$
\omega_{i}=n \omega_{0}
$$

where ω_{0} is the fundamental frequency

$$
\omega_{0}=\frac{2 \pi}{T}
$$

This results in changing the problem to

$$
x(t) \approx \sum_{n} a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(\omega_{0} t\right)
$$

This is termed the Fourier Series Expansion of $x(t)$ or Fourier Transform for short.

The Fourier transform is essentially curve fitting. It tries to approximate a periodic function with sinusoids which have the same period. By doing so, you convert a signal which is hard to analyze into a signal composed of sinusoids, which are easy to analyze.

Converting from the Fourier Series to $\mathbf{x}(\mathrm{t})$

If you have the fourier transform (an, bn terms), finding $x(t)$ is easy: just add up the terms. What going from the Fouier Series to $x(t)$ tells you is:

If you add up a bunch of functions which are periodic in time T, the result will be periodic in time T.
That deserves a big duh. That's pretty obvious.

Converting from $\mathbf{x}(\mathrm{t})$ to the Fourier Series

If you have a function which is periodic in time T, determining the Fourier Series is a bit harder. It's also more significant. What the Fourier Transform tells you is:

If you have a function which is periodic in time T, if that function isn't a pure sine wave, it contains harmonics.
That's rather significant. It tells you that any periodic waveform which is not a sine wave is composed of a bunch of frequencies and those frequencies are harmonics of the fundamental.
To find the terms for the Fouier series, assume $\mathrm{x}(\mathrm{t})$ is periodic:

$$
x(t+T)=x(t)
$$

and $\mathrm{x}(\mathrm{t})$ can be expressed in terms of sine and cosine terms:

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{o} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{o} t\right)
$$

where

$$
\omega_{0}=\frac{2 \pi}{T}
$$

Note that all sine waves are orthogonal:

$$
\begin{aligned}
& \operatorname{avg}\left(\cos \left(\omega_{1} t\right) \cdot \cos \left(\omega_{2} t\right)\right)=\left\{\begin{array}{cc}
\frac{1}{2} & \omega_{1}=\omega_{2} \\
0 & \text { otherwise }
\end{array}\right. \\
& \operatorname{avg}\left(\sin \left(\omega_{1} t\right) \cdot \sin \left(\omega_{2} t\right)\right)=\left\{\begin{array}{cc}
\frac{1}{2} & \omega_{1}=\omega_{2} \\
0 & \text { otherwise }
\end{array}\right. \\
& \operatorname{avg}\left(\sin \left(\omega_{1} t\right) \cdot \cos \left(\omega_{2} t\right)\right)=0
\end{aligned}
$$

This allows you to determine each of the Fourier coefficients as:

$$
\begin{aligned}
& a_{0}=\operatorname{avg}(x) \\
& a_{n}=2 \cdot \operatorname{avg}\left(x(t) \cdot \cos \left(n \omega_{0} t\right)\right) \\
& b_{n}=2 \cdot \operatorname{avg}\left(x(t) \cdot \sin \left(n \omega_{0} t\right)\right)
\end{aligned}
$$

Note: You can also express $\mathrm{x}(\mathrm{t})$ in polar form

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} c_{n} \cos \left(n \omega_{o} t+\theta_{n}\right)
$$

where

$$
a_{n}-j b_{n}=c_{n} \angle \theta_{n}
$$

or complex exponential form:

$$
x(t)=a_{0}+\sum_{n=1}^{\infty} c_{n} e^{j\left(n \omega_{o} t+\theta_{n}\right)}
$$

All three forms are equivalent - it's just what you're personal preference is. I personally like the first form.

Example 1: Sine Wave

Find the Fourier trasnform for a $1 \mathrm{rad} / \mathrm{sec}$ cosine wave

$$
x(t)=\cos (t)
$$

Solution: DC term

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{T} x(t) \cdot d t \\
& a_{0}=0
\end{aligned}
$$

Cosine terms

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{T} x(t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{2}{T} \int_{-\pi}^{\pi} \cos (t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\left\{\begin{array}{cc}
\frac{2}{T} \int_{-\pi}^{\pi} \cos ^{2}(t) \cdot d t & n=1 \\
0 & \text { otherwise }
\end{array}\right. \\
& a_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\frac{1}{2}+\frac{1}{2} \cos (2 t)\right) \cdot d t \\
& a_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\frac{1}{2}\right) \cdot d t \\
& a_{1}=1
\end{aligned}
$$

The Fourier transform for

$$
x(t)=\cos (t)
$$

is

$$
x(t)=\cos (t)
$$

If the function is already expressed in terms of sine and cosine functions, it's already in the form of its Fourier transform.

Example \#2: Delta Function

Let $\mathrm{x}(\mathrm{t})$ be a $1 \mathrm{rad} / \mathrm{sec}$ delta function

$$
\begin{aligned}
& x(t)=x(t+2 \pi) \\
& x(t)=\delta(t)
\end{aligned}
$$

Find the Fourier transform: $\mathrm{X}(\mathrm{jw})$

Solution: The DC term is

$$
\begin{aligned}
& a_{0}=\frac{1}{T} \int_{T} x(t) \cdot d t \\
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \delta(t) \cdot d t \\
& a_{0}=\frac{1}{2 \pi}
\end{aligned}
$$

The cosine terms are (note: $\omega_{0}=\frac{2 \pi}{T}=1$)

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{T} x(t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{2}{2 \pi} \int_{-\pi}^{\pi} \delta(t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{1}{\pi}
\end{aligned}
$$

The sine terms are

$$
\begin{aligned}
& b_{n}=\frac{2}{T} \int_{T} x(t) \cdot \sin (n t) \cdot d t \\
& b_{n}=\frac{2}{2 \pi} \int_{-\pi}^{\pi} \delta(t) \cdot \sin (n t) \cdot d t \\
& b_{n}=0
\end{aligned}
$$

So,

$$
\delta(t)=\frac{1}{2 \pi}+\sum_{n=1 . . \infty} \frac{1}{\pi} \cos (n \pi t)
$$

You can check this in Matlab by plotting this out to 20 harmonics (should go to infinity). Just for kicks, plot $\mathrm{x}(\mathrm{t})$ from -3 pi to +3 pi

```
-->t = [-3*pi:0.001:3*pi]';
-->x = 0*t + 1/(2*pi);
-->for n=1:20
--> x = x + cos(n*t)/pi;
--> end
-->plot(t,x)
```


Fourier Series Approximation for a delta function taken out to 20 harmonics
The Fourier coefficients can also be shown in a table format:

harmonic	0	1	2	3	4	5	6	7
an	0.1592	0.3183	0.3183	0.3183	0.3183	0.3183	0.3183	0.3183
bn	0	0	0	0	0	0	0	0

Note that a delta function contains an infinite number of harmonics, each with the same amplitude.

Example 2: Square Wave

Find the Fourier Transform for a $1 \mathrm{rad} / \mathrm{sec} 50 \%$ Duty Cycle Square Wave.

$$
\begin{aligned}
& x(t)=x(t+2 \pi) \\
& x(t)= \begin{cases}1 & 0<t<\pi \\
0 & \pi<t<2 \pi\end{cases}
\end{aligned}
$$

Solution: The DC term is

$$
a_{0}=\frac{1}{T} \int_{T} x(t) \cdot d t=\frac{1}{2}
$$

The cosine terms

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{T} x(t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{2}{2 \pi} \int_{0}^{\pi} 1 \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{1}{\pi} \cdot\left(\frac{1}{n} \sin (n t)\right)_{0}^{\pi} \\
& a_{n}=0
\end{aligned}
$$

The sine terms

$$
\begin{aligned}
& b_{n}=\frac{2}{T} \int_{T} x(t) \cdot \sin (n t) \cdot d t \\
& b_{n}=\frac{2}{2 \pi} \int_{0}^{\pi} 1 \cdot \sin (n t) \cdot d t \\
& b_{n}=\frac{1}{\pi} \cdot\left(\frac{-1}{n} \cos (n t)\right)_{0}^{\pi} \\
& b_{n}=\frac{1}{\pi} \cdot\left(\frac{1+(-1)^{n}}{n}\right)
\end{aligned}
$$

$$
b_{n}=\left\{\begin{array}{cc}
\frac{2}{n \pi} & \mathrm{n} \text { odd } \\
0 & \mathrm{n} \text { even }
\end{array}\right.
$$

So, the Fourier Transform for a $0 \mathrm{~V}-1 \mathrm{~V}$ square wave is

$$
x(t)=\frac{1}{2}+\sum_{\mathrm{n}=1,3,5, \ldots} \frac{2}{n \pi} \sin (n t)
$$

A table of the Fourier coefficients is

harmonic	0	1	2	3	4	5	6	7
an	0.5	0	0	0	0	0	0	0
bn	0	0.6366	0	0.2122	0	0.1273	0	0.0909

In Matlab, plotting $\mathrm{x}(\mathrm{t})$ out to its 20th harmonic results in the following:

```
x = 0.5 + 0*t;
    for i=1:10
    n = 2*i-1;
    x = x + 2/(n*pi) * sin(n*t);
    end
plot(t,x)
```


Again, it isn't a perfect square wave. To get that, you'd have to go out to infinity.

Example 3: A 10\% Duty Cycle Square Wave

$x(t)=x(t+2 \pi)$
$x(t)=\left\{\begin{array}{cc}1 & 0<t<\frac{2 \pi}{10} \\ 0 & \frac{2 \pi}{10}<t<2 \pi\end{array}\right.$

The DC term is:

$$
a_{0}=\frac{1}{T} \int_{T} x(t) \cdot d t=\frac{1}{10}
$$

The cosine terms:

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{T} x(t) \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{2}{2 \pi} \int_{0}^{\pi / 5} 1 \cdot \cos (n t) \cdot d t \\
& a_{n}=\frac{1}{\pi}\left(\frac{1}{n} \sin (n t)\right)_{0}^{\pi / 5} \\
& a_{n}=\frac{1}{n \pi} \sin \left(\frac{n \pi}{5}\right)
\end{aligned}
$$

The sine terms:

$$
\begin{aligned}
& b_{n}=\frac{2}{T} \int_{T} x(t) \cdot \sin (n t) \cdot d t \\
& b_{n}=\frac{2}{2 \pi} \int_{0}^{\pi / 5} 1 \cdot \sin (n t) \cdot d t \\
& b_{n}=\frac{1}{\pi}\left(\frac{-1}{n} \cos (n t)\right)_{0}^{\pi / 5} \\
& b_{n}=\frac{1}{n \pi}\left(1-\cos \left(\frac{n \pi}{5}\right)\right)
\end{aligned}
$$

A table of Fourier coefficients is:

harmonic	0	1	2	3	4	5	6	7
an	0.1	0.0013	0.0043	0.0064	0.0053	0	-0.0080	-0.0151
bn	0	0.0004	0.0031	0.0089	0.0164	0.0227	0.0246	0.0280

Adding up the first 20 terms in Matlab

```
an = zeros(20,1);
bn = zeros (20,1);
n=[1:20]';
an = (1 ./ (n*pi)) .* sin( n*pi/5)
bn = (1 ./ (n*pi)) .* ( 1 - cos(n*pi/5 ) );
x = 0.1 + 0*t;
for n=1:20
    x = x + an(n) * cos(n*t) + bn(n) * sin(n*t);
    end
plot(t,x)
```


Fourier Series approximation to a 10% duty cycle square wave, taken out to the 20th harmonic

