
Fourier Transform

Background:

Suppose you have a filter with an input X and a transfer function G(jw):

Y = G(jω) ⋅ X

If x(t) is a sinusoid at frequency , y(t) will also be a sinusoid at frequency . y(t) is related to x(t) by the gain,ω ω

gain, G, evaluated at .s = jω

If x(t) is composed of several sine waves, you can use superposition. The output, y(t) will be the sum of each

input times its corresponding gain.

Example: Find y(t) for

Y = 


20

(jω+2)(jω+5)

X

x(t) = 1 + 2 sin(3t) + 4 sin(5t)

Solution: Solve three different problems.

x(t) jw G(s) y(t)

1 jw = 0 G(0) = 2 2

2 sin(3t) jw = j3 G(j3) = 0.95∠ − 870 2 ⋅ 0.95 sin (3t − 870)

4 sin(5t) jw = j5 G(j5) = 0.52∠ − 1130 4 ⋅ 0.52 sin (5t − 1130)

y(t) will be the sum of all three terms (by superposition)

y(t) = 2 + 1.0 sin (3t − 870) + 2.1 sin (5t − 1130)

Note that this only works if the input is composed of sinusoids.

Fourier Transform

Assume instead that the input is periodic in time T:

x(t) = x(t + T)

For example, a 10 rad/sec square wave would be

x(t) =





1 sin(10t) > 0

0 otherwise

Since sin(10t) is periodic in , x(t) is periodic in 0.2π 0.2π

x(t) = x(t + 0.2π)

Find y(t). Presently, the tools we have don't work for this problem: x(t) isn't a sine wave.

NDSU Fourier Transform ECE 343

JSG 1 June 11, 2018

The solution is typical of engineering solutions:

Given a difficult problem you can't solve, change the problem to one you can solve.

We know how to solve differential equations when the input is sinusoidal or a sum of sinusoids. Change this

problem to a sum of sinusoids.

x(t) ≈
i
Σ a icos (ωit) + bisin (ωit)

Since x(t) is periodic in time T, it is reasonable to assume that all sine and cosine terms will also be periodic in

time T. Adding this requirement results in

ωi = nω0

where is the fundamental frequencyω0

ω0 = 2π

T

This results in changing the problem to

x(t) ≈
n
Σ ancos (nω0t) + bnsin (ω0t)

This is termed the Fourier Series Expansion of x(t) or Fourier Transform for short.

The Fourier transform is essentially curve fitting. It tries to approximate a periodic function with sinusoids

which have the same period. By doing so, you convert a signal which is hard to analyze into a signal composed

of sinusoids, which are easy to analyze.

Converting from the Fourier Series to x(t)

If you have the fourier transform (an, bn terms), finding x(t) is easy: just add up the terms. What going from the

Fouier Series to x(t) tells you is:

If you add up a bunch of functions which are periodic in time T, the result will be periodic in time T.

That deserves a big duh. That's pretty obvious.

Converting from x(t) to the Fourier Series

If you have a function which is periodic in time T, determining the Fourier Series is a bit harder. It's also more

significant. What the Fourier Transform tells you is:

If you have a function which is periodic in time T, if that function isn't a pure sine wave, it contains

harmonics.

That's rather significant. It tells you that any periodic waveform which is not a sine wave is composed of a bunch

of frequencies and those frequencies are harmonics of the fundamental.

To find the terms for the Fouier series, assume x(t) is periodic:

NDSU Fourier Transform ECE 343

JSG 2 June 11, 2018

x(t + T) = x(t)

and x(t) can be expressed in terms of sine and cosine terms:

x(t) = a0 + Σ
n=1

∞

ancos (nωot) + Σ
n=1

∞

bnsin (nωot)

where

ω0 = 2π

T

Note that all sine waves are orthogonal:

avg(cos (ω1t) ⋅ cos (ω2t)) =





1

2
ω1 = ω2

0 otherwise

avg(sin (ω1t) ⋅ sin (ω2t)) =





1

2
ω1 = ω2

0 otherwise

avg(sin (ω1t) ⋅ cos (ω2t)) = 0

This allows you to determine each of the Fourier coefficients as:

a0 = avg(x)

an = 2 ⋅ avg(x(t) ⋅ cos (nω0t))

bn = 2 ⋅ avg(x(t) ⋅ sin (nω0t))

Note: You can also express x(t) in polar form

x(t) = a0 + Σ
n=1

∞

cncos (nωot + θn)

where

an − jbn = cn∠θn

or complex exponential form:

x(t) = a0 + Σ
n=1

∞

cne j(nωot+θn)

All three forms are equivalent - it's just what you're personal preference is. I personally like the first form.

NDSU Fourier Transform ECE 343

JSG 3 June 11, 2018

Example 1: Sine Wave

Find the Fourier trasnform for a 1 rad/sec cosine wave

x(t) = cos(t)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time

One Cycle

Solution: DC term

a0 = 1

T ∫T
x(t) ⋅ dt

a0 = 0

Cosine terms

an = 2

T ∫T
x(t) ⋅ cos (nt) ⋅ dt

an = 2

T ∫−π

π
cos(t) ⋅ cos (nt) ⋅ dt

an =








2

T ∫−π

π
cos2(t) ⋅ dt n = 1

0 otherwise

a1 = 1
π ∫−π

π 


1

2
+ 1

2
cos (2t) ⋅ dt

a1 = 1
π ∫−π

π 


1

2

 ⋅ dt

a1 = 1

The Fourier transform for

x(t) = cos(t)

is

x(t) = cos(t)

If the function is already expressed in terms of sine and cosine functions, it's already in the form of its Fourier

transform.

NDSU Fourier Transform ECE 343

JSG 4 June 11, 2018

Example #2: Delta Function

Let x(t) be a 1 rad/sec delta function

x(t) = x(t + 2π)

x(t) = δ(t)

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.5

1

1.5

2

Time (seconds)

One Cycle

Find the Fourier transform: X(jw)

Solution: The DC term is

a0 = 1

T ∫T
x(t) ⋅ dt

a0 = 1

2π ∫−π

π
δ(t) ⋅ dt

a0 = 1

2π

The cosine terms are (note:)ω0 = 2π

T
= 1

an = 2

T ∫T
x(t) ⋅ cos (nt) ⋅ dt

an = 2

2π ∫−π

π
δ(t) ⋅ cos(nt) ⋅ dt

an = 1
π

The sine terms are

bn = 2

T ∫T
x(t) ⋅ sin (nt) ⋅ dt

bn = 2

2π ∫−π

π
δ(t) ⋅ sin(nt) ⋅ dt

bn = 0

So,

δ(t) = 1

2π
+ Σ

n=1..∞

1
π cos (nπt)

NDSU Fourier Transform ECE 343

JSG 5 June 11, 2018

You can check this in Matlab by plotting this out to 20 harmonics (should go to infinity). Just for kicks, plot x(t)

from -3pi to +3pi

-->t = [-3*pi:0.001:3*pi]';
-->x = 0*t + 1/(2*pi);

-->for n=1:20
--> x = x + cos(n*t)/pi;
--> end

-->plot(t,x)

Fourier Series Approximation for a delta function taken out to 20 harmonics

The Fourier coefficients can also be shown in a table format:

harmonic 0 1 2 3 4 5 6 7

an 0.1592 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183 0.3183

bn 0 0 0 0 0 0 0 0

Note that a delta function contains an infinite number of harmonics, each with the same amplitude.

NDSU Fourier Transform ECE 343

JSG 6 June 11, 2018

Example 2: Square Wave

Find the Fourier Transform for a 1 rad/sec 50% Duty Cycle Square Wave.

x(t) = x(t + 2π)

x(t) =





1 0 < t < π

0 π < t < 2π

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.25

0.5

0.75

1

1.25

Time (seconds)

One Cycle

Solution: The DC term is

a0 = 1

T ∫T
x(t) ⋅ dt = 1

2

The cosine terms

an = 2

T ∫T
x(t) ⋅ cos (nt) ⋅ dt

an = 2

2π ∫0

π
1 ⋅ cos(nt) ⋅ dt

an = 1
π ⋅ 

1
n sin(nt)

0

π

an = 0

The sine terms

bn = 2

T ∫T
x(t) ⋅ sin (nt) ⋅ dt

bn = 2

2π ∫0

π
1 ⋅ sin(nt) ⋅ dt

bn = 1
π ⋅ 

−1
n cos(nt)

0

π

bn = 1
π ⋅ 

1+(−1)n

n



NDSU Fourier Transform ECE 343

JSG 7 June 11, 2018

bn =





2
nπ n odd

0 n even

So, the Fourier Transform for a 0V - 1V square wave is

x(t) = 1

2
+ Σ

n=1,3,5,...

2
nπ sin (nt)

A table of the Fourier coefficients is

harmonic 0 1 2 3 4 5 6 7

an 0.5 0 0 0 0 0 0 0

bn 0 0.6366 0 0.2122 0 0.1273 0 0.0909

In Matlab, plotting x(t) out to its 20th harmonic results in the following:

x = 0.5 + 0*t;

for i=1:10
 n = 2*i-1;
 x = x + 2/(n*pi) * sin(n*t);
 end

plot(t,x)

Again, it isn't a perfect square wave. To get that, you'd have to go out to infinity.

NDSU Fourier Transform ECE 343

JSG 8 June 11, 2018

Example 3: A 10% Duty Cycle Square Wave

x(t) = x(t + 2π)

x(t) =








1 0 < t < 2π

10

0 2π

10
< t < 2π

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.25

0.5

0.75

1

1.25

Time (seconds)

10%

90%

One Cycle

The DC term is:

a0 = 1

T ∫T
x(t) ⋅ dt = 1

10

The cosine terms:

an = 2

T ∫T
x(t) ⋅ cos (nt) ⋅ dt

an = 2

2π ∫0

π/5
1 ⋅ cos (nt) ⋅ dt

an = 1
π



1
n sin (nt)

0

π/5

an = 1
nπ sin 

nπ

5



The sine terms:

bn = 2

T ∫T
x(t) ⋅ sin (nt) ⋅ dt

bn = 2

2π ∫0

π/5
1 ⋅ sin (nt) ⋅ dt

bn = 1
π



−1
n cos (nt)

0

π/5

bn = 1
nπ

1 − cos 

nπ

5





A table of Fourier coefficients is:

NDSU Fourier Transform ECE 343

JSG 9 June 11, 2018

harmonic 0 1 2 3 4 5 6 7

an 0.1 0.0013 0.0043 0.0064 0.0053 0 -0.0080 -0.0151

bn 0 0.0004 0.0031 0.0089 0.0164 0.0227 0.0246 0.0280

Adding up the first 20 terms in Matlab

an = zeros(20,1);
bn = zeros(20,1);

n = [1:20]';

an = (1 ./ (n*pi)) .* sin(n*pi/5)
bn = (1 ./ (n*pi)) .* (1 - cos(n*pi/5));

x = 0.1 + 0*t;

for n=1:20
 x = x + an(n) * cos(n*t) + bn(n) * sin(n*t);
 end

plot(t,x)

Fourier Series approximation to a 10% duty cycle square wave, taken out to the 20th harmonic

NDSU Fourier Transform ECE 343

JSG 10 June 11, 2018

