Complex Fourier Transform and Numerical Solutions

Complex Fourier Transform

From before, if a function is periodic in time T

$$
x(t)=x(t+T)
$$

it can be expressed as a sum of sine and cosine terms

$$
x(t)=a_{0}+\sum a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right) .
$$

It can also be expressed in terms of a complex exponential:

$$
x(t)=c_{0}+\sum c_{n} e^{-j n \omega_{0} t}
$$

where

$$
c_{n}=\frac{1}{T} \int_{T} x(t) \cdot e^{-j n \omega_{0} t} \cdot d t
$$

The relationship between the complex Fourier transform and its sine and cosine version comes from Euler's identity

$$
\begin{aligned}
& \cos (x)=\left(\frac{e^{j x}+e^{-j x}}{2}\right) \\
& \sin (x)=\left(\frac{e^{j x}-e^{-j x}}{2 j}\right)
\end{aligned}
$$

Suppose c_{n} has a real and complex part

$$
c_{n}=a_{n}+j b_{n}
$$

and $\mathrm{c}_{-\mathrm{n}}$ is its complex conjugate (it will be for real functions)

$$
c_{-n}=a_{n}-j b_{n}
$$

Then the nth harmonic of $x(t)$ will be

$$
\begin{aligned}
& x_{n}(t)=c_{n} e^{j n \omega_{0} t}+c_{-n} e^{-j n \omega_{0} t} \\
& x_{n}(t)=\left(a_{n}+j b_{n}\right) e^{j n \omega_{0} t}+\left(a_{n}-j b_{n}\right) e^{-j n \omega_{0} t} \\
& x_{n}(t)=a_{n}\left(e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}\right)+j b_{n}\left(e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}\right) \\
& x_{n}(t)=2 a_{n}\left(\frac{e^{j n \omega_{0} t}+e^{-j n \omega_{0} t}}{2}\right)+2 j^{2} b_{n}\left(\frac{e^{j n \omega_{0} t}-e^{-j n \omega_{0} t}}{2 j}\right) \\
& x_{n}(t)=2 a_{n} \cos \left(n \omega_{0} t\right)-2 b_{n} \sin \left(n \omega_{0} t\right)
\end{aligned}
$$

The relationship between the complex Fourier transform and its sine and cosine version is
$2 *$ real $\left(c_{n}\right)=$ cosine terms
$-2 * \operatorname{imag}\left(c_{n}\right)=$ sine terms

Example 1: Find the complex Fourier transform for

$$
x(t)=\sum e^{j n \omega_{0} t}
$$

Solution:

$$
\begin{aligned}
& c_{n}=\frac{1}{T} \int_{T} x(t) \cdot e^{-j n \omega_{0} t} \cdot d t \\
& c_{n}=\frac{1}{T} \int_{T} e^{j n \omega_{0} t} \cdot e^{-j n \omega_{0} t} \cdot d t \\
& c_{n}=\frac{1}{T} \int_{T} 1 \cdot d t \\
& c_{n}=1
\end{aligned}
$$

$\mathrm{x}(\mathrm{t})$ is already in complex exponential form so there's nothing to do. This is also why you use the complex conjugate in the $\exp ()$ term.

Example 2: Find the complex Fourier transform for a $1 \mathrm{rad} / \mathrm{sec} 50 \%$ duty cycle square wave.

$$
x(t)=\left\{\begin{array}{cc}
1 & 0<t<\pi \\
0 & \pi<t<2 \pi
\end{array}\right.
$$

Solution: The fundamental frequency is one

$$
\omega_{0}=\frac{2 \pi}{T}=1
$$

so

$$
\begin{aligned}
& c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) \cdot e^{-j n t} \cdot d t \\
& c_{n}=\frac{1}{2 \pi} \int_{0}^{\pi} \cdot e^{-j n t} \cdot d t \\
& c_{n}=\frac{1}{2 \pi} \cdot\left(\frac{1}{-j n} e^{-j n t}\right)_{0}^{\pi} \\
& c_{n}=\frac{j}{2 n \pi}\left((-1)^{n}-1\right)
\end{aligned}
$$

or

$$
c_{n}=\left\{\begin{array}{cc}
\left(\frac{-j}{n \pi}\right) & \mathrm{n} \text { odd } \\
0 & \mathrm{n} \text { even }
\end{array}\right.
$$

This is the same as we got using sine and cosine terms

$$
\begin{aligned}
& b_{n}=-2 \cdot \operatorname{imag}\left(c_{n}\right) \\
& b_{n}=\left(\frac{2}{n \pi}\right)
\end{aligned}
$$

n odd
c_{n} is the phasor representation for $\sin ()$, and much easier to compute.

Example 3: Find the complex Fourier transform for a saw-tooth wave:

$$
x(t)=0.5+\frac{t}{2 \pi}
$$

Solution: The 0.5 affects the DC term

$$
\begin{aligned}
& c_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x(t) \cdot d t \\
& c_{0}=0.5
\end{aligned}
$$

The other terms come from

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{t}{2 \pi} \cdot e^{-j n t} \cdot d t
$$

Integrating by parts

$$
\begin{aligned}
& c_{n}=\left(\frac{1}{(2 \pi)^{2}}\right)\left(\frac{1}{-j n} \cdot t \cdot e^{-j n t}-\frac{1}{(-j n)^{2}} e^{-j n t}\right)_{-\pi}^{\pi} \\
& c_{n}=\left(\frac{1}{(2 \pi)^{2}}\right)\left(\left(\frac{1}{-j n} \cdot \pi \cdot(-1)^{n}-\frac{(-1)^{n}}{(j n)^{2}}\right)-\left(\frac{1}{-j n} \cdot(-\pi) \cdot(-1)^{n}-\frac{(-1)^{n}}{(j n)^{2}}\right)\right) \\
& c_{n}=\left(\frac{1}{(2 \pi)^{2}}\right)\left(\frac{2 \pi}{-j n} \cdot(-1)^{n}\right) \\
& c_{n}=\left(\frac{j(-1)^{n}}{2 n \pi}\right)
\end{aligned}
$$

This also gives the cosine and sine terms

$$
\begin{aligned}
& a_{n}=2 \cdot \operatorname{real}\left(c_{n}\right)=0 \\
& b_{n}=-2 \cdot \operatorname{imag}\left(c_{n}\right)=\left(\frac{-(-1)^{n}}{n \pi}\right)
\end{aligned}
$$

harmonic	0	1	2	3	4	5	6	7
cn	0.5	-j 0.0796	j 0.0398	-j 0.0265	j 0.0199	-j 0.0159	j 0.0133	-j 0.0114
an 2^{*} real(cn)	0.5	0	0	0	0	0	0	0
bn -2^{*} imag(cn)	0	0.1592	-0.0796	0.0531	-0.0398	0.0318	-0.0265	0.0227

Plotting this in Matlab out to 20 terms

```
bn = zeros(20,1);
for n=1:20
    bn(n) = - ((-1)^n / (n*pi));
    end
x = 0.5 + 0*t;
for n=1:20
    x = x + bn(n) * sin(n*t);
end
plot(t,x)
```


Fourier Approximation to a Sawtooth Wave taken out to 20 terms

Numerical Solutions

Hand calculations are a lot of fun, but some functions are really hard to integrate by hand. Fortunately, you can always use Matlab.

Given a function, $\mathrm{x}(\mathrm{t})$, which is periodic in time T

$$
x(t)=x(t+T)
$$

the sine and cosine terms can be found in Matlab as

$$
\begin{aligned}
& a_{0}=\operatorname{mean}(x) \\
& a_{n}=2 \cdot \operatorname{mean}\left(x \cdot \cos \left(n \omega_{0} t\right)\right) \\
& b_{n}=2 \cdot \operatorname{mean}\left(x \cdot \sin \left(n \omega_{0} t\right)\right)
\end{aligned}
$$

For example, find the Fourier transform for

$$
x(t)=\left\{\begin{array}{cc}
\sin ^{2}(t) & 0<t<\pi \\
0 & \pi<t<2 \pi
\end{array}\right.
$$

The first 5 harmonics found using Matlab are:
DC:

$$
\begin{aligned}
& \mathrm{a} 0=\operatorname{mean}(\mathrm{x}) \\
& 0.2499676
\end{aligned}
$$

Cosine Terms

```
a1 = 2*mean(x .* cos(t))
    - 2.373D-12
a2 = 2*mean(x .* cos(2*t))
    - 0.2499676
a3 = 2*mean(x .* cos(3*t))
    - 2.373D-12
a4 = 2*mean(x .* cos(4*t))
            2.373D-12
a5 = 2*mean(x .* cos(5*t))
    - 2.373D-12
```


Sine terms

```
b1 = 2*mean(x .* sin(t))
            0.4243582
b2 = 2*mean(x .* sin(2*t))
            9.254D-15
b3 = 2*mean(x . * sin(3*t))
        - 0.0848716
b4 = 2*mean(x .* sin(4*t))
            1.857D-14
b5 = 2*mean(x . * sin(5*t))
    - 0.0121245
```

So,

$$
x(t) \approx 0.2499+0.4243 \sin (t)-0.2499 \cos (2 t)-0.0848 \sin (3 t)-0.0121 \sin (5 t)
$$

This also works with the complex Fourier transform (but you get the cosine and sine terms at the same time)

```
-->c1 = mean(x .* exp(-j*t))
c1 = - 1.187D-12 - 0.2121791i
-->c2 = mean(x .* exp (-j*2*t))
c2 = - 0.1249838-4.627D-15i
-->c3 = mean(x .* exp (-j*3*t))
    c3 = - 1.187D-12 + 0.0424358i
-->c4 = mean(x .* exp(-j*4*t))
    C4 = 1.187D-12 - 9.278D-15i
-->c5 = mean(x .* exp(-j*5*t))
    c5 = - 1.186D-12 + 0.0060623i
```

Plotting $\mathrm{x}(\mathrm{t})$ and its Fourier approximation taken out to five terms together:

```
xf = a0 + b1*sin(t) + a2*\operatorname{cos(2*t) + b3*sin(3*t) + b5*sin(5*t);}
plot(t,x,t,xf)
```


$x(t)$ (blue) and its Fourier approximation taken out to the 5th harmonic (red)

This also works with the complex Fourier transform

```
-->c1 = mean(x .* exp(-j*t))
c1 = - 1.187D-12 - 0.2121791i
-->c2 = mean(x .* exp(-j*2*t))
c2 = - 0.1249838-4.627D-15i
-->c3 = mean(x .* exp(-j*3*t))
    c3 = - 1.187D-12 + 0.0424358i
-->c4 = mean(x .* exp(-j*4*t))
    C4 = 1.187D-12 - 9.278D-15i
-->c5 = mean(x .* exp (-j*5*t))
    c5 = - 1.186D-12 + 0.0060623i
```

