Properties of LaPlace Transforms

Properties of LaPlace Transforms

Let's start with some properties of LaPlace transforms:
Linearity: $\quad a f(t)+b g(t) \Leftrightarrow a F(s)+b G(s)$

Convolution: $\quad f(t) * * g(t) \Leftrightarrow F(s) \cdot G(s)$

Differentiation: $\frac{d y}{d t} \Leftrightarrow s Y-y(0)$

$$
\frac{d^{2} y}{d t^{2}} \Leftrightarrow s^{2} Y-s y(0)-\frac{d y(0)}{d t}
$$

Integration: $\quad \int_{0}^{t} x(\tau) d \tau=\frac{1}{s} X(s)$

Delay

$$
x(t-T) \Leftrightarrow e^{-s T} X(s)
$$

Proofs:

Linearity:

$$
\begin{aligned}
L(a f(t) & +b g(t))=\int_{-\infty}^{\infty}(a f(t)+b g(t)) \cdot e^{-s t} \cdot d t \\
& =\int_{-\infty}^{\infty}(a f(t)) \cdot e^{-s t} \cdot d t+\int_{-\infty}^{\infty}(b g(t)) \cdot e^{-s t} \cdot d t \\
& =a \int_{-\infty}^{\infty} f(t) \cdot e^{-s t} \cdot d t+b \int_{-\infty}^{\infty} g(t) \cdot e^{-s t} \cdot d t \\
& =a F(s)+b G(s)
\end{aligned}
$$

Convolution:

$$
\begin{aligned}
& f(t) * * g(t)=\int_{-\infty}^{\infty} f(t-\tau) \cdot g(\tau) \cdot d \tau \\
& L(f(t) * * g(t))=\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t-\tau) \cdot g(\tau) \cdot d \tau\right) \cdot e^{-s t} \cdot d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} f(t-\tau) \cdot g(\tau) \cdot e^{-s t} \cdot d t\right) \cdot d \tau \\
& =\left(\int_{-\infty}^{\infty} f(t-\tau) \cdot e^{-s t} \cdot d t\right) \cdot\left(\int_{-\infty}^{\infty} g(t) \cdot e^{-s t} \cdot d t\right) \\
& =F(s) \cdot G(s)
\end{aligned}
$$

Differentiation:

$$
L\left(\frac{d x}{d t}\right)=\int_{-\infty}^{\infty}\left(\frac{d x(t)}{d t}\right) \cdot e^{-s t} \cdot d t
$$

Assume causal (zero for $\mathrm{t}<0$)

$$
L\left(\frac{d x}{d t}\right)=\int_{0}^{\infty}\left(\frac{d x(t)}{d t}\right) \cdot e^{-s t} \cdot d t
$$

Integrate by parts.

$$
\begin{aligned}
& (a b)^{\prime}=a^{\prime} \cdot b+a \cdot b^{\prime} \\
& \int a^{\prime} \cdot b \cdot d t=a b-\int a \cdot b^{\prime} \cdot d t
\end{aligned}
$$

Let

$$
\begin{aligned}
& a^{\prime}=\frac{d x}{d t} \\
& a=x \\
& b=e^{-s t}
\end{aligned}
$$

then

$$
\begin{aligned}
L\left(\frac{d x}{d t}\right) & =\int_{0}^{\infty}\left(\frac{d x(t)}{d t}\right) \cdot e^{-s t} \cdot d t \\
& =\left(x \cdot e^{-s t}\right)_{0}^{\infty}-\int_{-\infty}^{\infty}-s \cdot x(t) \cdot e^{-s t} \cdot d t \\
& =-x(0)+s \int_{-\infty}^{\infty} x(t) \cdot e^{-s t} \cdot d t \\
& =s X-x(0)
\end{aligned}
$$

Integration:

$$
L\left(\int_{0}^{t} x(\tau) \cdot d \tau\right)=\int_{-\infty}^{\infty}\left(\int_{0}^{t} x(\tau) \cdot d \tau\right) \cdot e^{-s t} \cdot d t
$$

Integrate by parts.

$$
\int a \cdot b^{\prime} \cdot d t=a b-\int a^{\prime} \cdot b \cdot d t
$$

Let

$$
\begin{aligned}
& a=\int_{0}^{t} x(\tau) \cdot d \tau \\
& b^{\prime}=e^{-s t}
\end{aligned}
$$

then

$$
\begin{aligned}
& a^{\prime}=x \\
& b=\frac{-1}{s} e^{-s t} \\
& L\left(\int_{0}^{t} x(\tau) \cdot d \tau\right)=\int_{-\infty}^{\infty}\left(\int_{0}^{t} x(\tau) \cdot d \tau\right) \cdot e^{-s t} \cdot d t \\
& \quad=\left(\int_{0}^{t} x(\tau) \cdot d \tau \cdot \frac{-1}{s} e^{-s t}\right)_{-\infty}^{\infty}-\int_{-\infty}^{\infty} x \cdot \frac{-1}{s} e^{-s t} \cdot d t
\end{aligned}
$$

Assuming the function vanishes at infinity

$$
\begin{aligned}
& =\frac{1}{s} \int_{-\infty}^{\infty} x \cdot d t \\
& =\left(\frac{1}{s}\right) X(s)
\end{aligned}
$$

Time Delay

$$
L(x(t-T))=\int_{-\infty}^{\infty} x(t-T) \cdot e^{-s t} \cdot d t
$$

Do a change of variable

$$
\begin{aligned}
t-T & =\tau \\
L(x(t- & T))=\int_{-\infty}^{\infty} x(\tau) \cdot e^{-s(\tau+T)} \cdot d \tau \\
& =\int_{-\infty}^{\infty} x(\tau) \cdot e^{-s \tau} \cdot e^{-s T} \cdot d \tau \\
& =e^{-s T} \cdot \int_{-\infty}^{\infty} x(\tau) \cdot e^{-s \tau} \cdot d \tau \\
& =e^{-s T} \cdot X(s)
\end{aligned}
$$

Using Properties of LaPlace Transform

Unit Step: Find the LaPlace transform of

$$
x(t)=u(t)
$$

Write this as

$$
x(t)=\int \delta(t) \cdot d t
$$

Use the integration property

$$
X(s)=\left(\frac{1}{s}\right) \cdot 1
$$

Unit Ramp: Find the LaPlace transform of

$$
x(t)=t \cdot u(t)
$$

Rewrite this as

$$
\begin{aligned}
& x(t)=\int u(t) \cdot d t \\
& X(s)=\left(\frac{1}{s}\right) \cdot\left(\frac{1}{s}\right)=\frac{1}{s^{2}}
\end{aligned}
$$

Unit Parabola: Find the LaPlace transform of

$$
x(t)=t^{2} \cdot u(t)
$$

Rewrite this as

$$
\begin{aligned}
& x(t)=\int 2 t \cdot u(t) \cdot d t \\
& X(s)=\left(\frac{1}{s}\right)\left(\frac{2}{s^{2}}\right)=\left(\frac{2}{s^{3}}\right)
\end{aligned}
$$

Unit Pulse:

$$
x(t)=\left\{\begin{array}{cc}
1 & 0<t<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Rewrite this as

$$
\begin{aligned}
& x(t)=u(t)-u(t-1) \\
& X(s)=\left(\frac{1}{s}\right)-\left(e^{-s}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

$$
X(s)=\left(\frac{1-e^{-s}}{s}\right)
$$

You can also find the LaPlace transform for other functions. For example, find the LaPlace transform for $\mathrm{x}(\mathrm{t})$:

Painful Solution: Express $\mathrm{x}(\mathrm{t})$. Define two windows in the intervals $(1,2)$ and $(2,3)$. Use u() to turn on different functions in each window.

$$
x(t)=1 \cdot(u(t-1)-u(t-2))+(3-t) \cdot(u(t-2)-u(t-3))
$$

Now plug into the definition

$$
X(s)=\int_{0^{-}}^{\infty} x(t) \cdot e^{-s t} \cdot d t
$$

After about an hour, you'll have $\mathrm{X}(\mathrm{s})$.

Easier Solution: Differentiate until you get delta funcitons. Delta functions are EASY to convert to LaPlace:
$X(s)=0$
(no delta functions)

$+\left(\frac{1}{s}\right) e^{-s}$
(add in the delta function at $\mathrm{t}=1$, integrated one time to get back to $x(t)$
$+\left(\frac{1}{s}\right)^{2}\left(-e^{-2 s}+e^{-3 s}\right)$
(add in two more delta funcitons, integrated twice to get to x)

The net result is

$$
X(s)=\left(\frac{1}{s^{2}}\right)\left(-e^{-2 s}+e^{-3 s}\right)+\left(\frac{1}{s}\right)\left(e^{-s}\right)
$$

