Circuit Analysis with LaPlace Transforms

Background

Phasors allow you to analyze circuits with inductors and capacitors just like you analyze resistor circuits - the only difference is you need to use complex numbers. With phasor analysis, the basic assumption is that all functions are in the form of

$$
x=a \cdot e^{j \omega t}
$$

resulting in the phasor impedance for an inductor and capacitor being:

$$
\begin{aligned}
L & \rightarrow j \omega L \\
C & \rightarrow \frac{1}{j \omega C}
\end{aligned}
$$

In contrast, LaPlace transforms assume all functions are in the form of

$$
x(t)=a \cdot e^{s t}
$$

resulting in the LaPlace impedance being:

$$
\begin{aligned}
& L \rightarrow L s \\
& C \rightarrow \frac{1}{C s}
\end{aligned}
$$

Component	Phasor Impedance	LaPlace Impedance
R	R	R
L	jwL	Ls
C	$1 / \mathrm{jwC}$	$1 / \mathrm{Cs}$

With LaPlace impedance's, everything that worked in Circuits I and II still apply:

- Impedance's in series add: A resistor, inductor, and capacitor in series have an impedance of:

$$
Z=R+L s+\frac{1}{C s}
$$

- Impedance's in parallel add as the sum of the inverses, inverted. A resistor, inductor, and capacitor in parallel have a total impedance of

$$
Z=\left(\frac{1}{R}+\frac{1}{L s}+\frac{1}{1 / C s}\right)^{-1}
$$

- Current loops still work: The sum of the voltages around any closed path has to add to zero.
- Voltage nodes still work: The sum of the current from a node must add to zero.

There is a short-cut for analyzing electrical circuits using LaPlace transforms, however. This is to use a formulation called state space.

State Space

One way to describe a dynamic system is with a transfer function:

$$
Y=G(s) \cdot U
$$

Another way is to put the system in matrix form (called state space). If the energy in the system is defined by vector X (think of X as the voltages on capacitors and current in inductors: things that define the energy in the system), then the change in energy along with the output as function of the system state can be written as

$$
\begin{aligned}
& X^{\prime}=A X+B U \\
& Y=C X+D U
\end{aligned}
$$

With state-space, there is a third way to input a dynamic system into Matlab:

$$
G=s s(A, B, C, D) ;
$$

It's probably easiest to explain this with examples.

State-Space and Natural Responses

Example 1: For the following circuit, find the voltage, $y(t)=v 4(t)$ assuming $v 1(0)=v 2(0)=10$.

2nd-Order System: (there are two energy storage elements)

Step 1: Define the system states.
This is the voltage across the capacitors and the current through inductors. This defines the energy in the system.

$$
X=\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]
$$

Step 2: Define the change in energy in terms of the input (none here) and the system states
From the equations for a capacitor

$$
i_{c}=C \frac{d v}{d t}
$$

In the LaPlace domain:

$$
I_{c}=C(s V-v(0))
$$

Defining the current to each capacitor in terms of the states

$$
\begin{aligned}
& I_{1}=0.01\left(s V_{1}-v_{1}(0)\right)=\left(\frac{0-V_{1}}{10}\right)+\left(\frac{V_{2}-V_{1}}{10}\right)+\left(\frac{0-V_{1}}{100}\right) \\
& I_{2}=0.02\left(s V_{2}-v_{2}(0)\right)=\left(\frac{0-V_{2}}{100}\right)+\left(\frac{V_{1}-V_{2}}{10}\right)
\end{aligned}
$$

Group terms:

$$
\begin{array}{ll}
s V_{1}=-21 V_{1}+10 V_{2}+v_{1}(0) & * 21 \\
s V_{2}=5 V_{1}-5.5 V_{2}+v_{2}(0) & * 5
\end{array}
$$

Step 3: Solve for $\mathrm{y}=\mathrm{V} 2$. Place this in matrix (state-space form)

$$
\begin{aligned}
& s\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{cc}
-21 & 10 \\
5 & -5.5
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1}(0) \\
v_{2}(0)
\end{array}\right] \\
& Y=V_{2}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]+[0]
\end{aligned}
$$

In Matlab:

```
>> A = [-21,10; 5, -5.5]
    -21.0000 10.0000
    5.0000 -5.5000
>> B = [10 ; 10]
    1 0
    1 0
>> C = [0,1];
>> D = 0;
>> Y = SS(A,B,C,D);
```

At this point you can solve for $\mathrm{Y}(\mathrm{s})$:

```
>> zpk(Y)
```


$y(t)$ is found using the impulse response function for $\mathrm{Y}(\mathrm{s})$

```
t = [0:0.01:5]';
y = impulse(Y, t);
plot(t,y)
```


$y(t)$ for initial conditions of $v 1(0)=v 2(0)=10$
Eigenvalues and Eigenvectors: The eigenvalues of matrix X are the poles of the system. This tells you how the system behaves

```
>> eig(A)
    -23.7411
    -2.7589
```

The eigenvectors of A tell you what behaves each way:

```
>> [a,b] = eig(A)
a =
    -0.9644 -0.4807
    0.2644 -0.8769
b =
    -23.7411 
```

If the initial condition was $\left[\begin{array}{c}-0.9644 \\ 0.2644\end{array}\right]$ (or a scalar multiple of this), then $\mathrm{y}(\mathrm{t})$ decays as $e^{-23.74 t}$
If the initial condition was $\left[\begin{array}{c}-0.4807 \\ -0.8679\end{array}\right]$ (or a scalar multiple of this), then $\mathrm{y}(\mathrm{t})$ decays as $e^{-2.7589 t}$

To illustrate this, using the fast (first) eigenvector:

```
>> B = a(:,1)
    -0.9644
        0.2644
>> Y = SS(A,B,C,D);
>> y = impulse(Y, t);
>> plot(t,y)
```


$\mathrm{y}(\mathrm{t})$ when the initial conditions are equal to the fast eigenvector
Using the slow (second) eigenvector:

```
>> B = -a (:,2)
    0.4807
    0.8769
>> Y = ss(A,B,C,D);
>> y = impulse(Y, t);
>> plot(t,y)
```


$y(t)$ when the initial conditions are equal to the slow eigenvector

Example 2: 5-stage RC filter.

Find $\mathrm{V} 5(\mathrm{t})$ if the initial condition is $\mathrm{v} 1(0)=\mathrm{v} 2(0)=\mathrm{v} 3(0)=\mathrm{v} 4(0)=\mathrm{v} 5(0)=10 \mathrm{~V}$

This is where state-space really shines. You could use voltage nodes or current loops and solve for V5. That will take about two hours. It's much easier with state space.

Step 1: Define the state variables. The energy in the system is defined by

$$
X=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]
$$

Step 2: Define the change in the state variables in terms of the other states

$$
\begin{aligned}
& I_{1}=0.01 \frac{d V_{1}}{d t}=0.01\left(s V_{1}-v_{1}(0)\right)=\left(\frac{0-V_{1}}{10}\right)+\left(\frac{0-V_{1}}{100}\right)+\left(\frac{V_{2}-V_{1}}{10}\right) \\
& I_{2}=0.02 \frac{d V_{2}}{d t}=0.02\left(s V_{2}-v_{2}(0)\right)=\left(\frac{V_{1}-V_{2}}{10}\right)+\left(\frac{0-V_{2}}{100}\right)+\left(\frac{V_{3}-V_{2}}{10}\right) \\
& I_{3}=0.03 \frac{d V_{3}}{d t}=0.03\left(s V_{3}-v_{3}(0)\right)=\left(\frac{V_{2}-V_{3}}{10}\right)+\left(\frac{0-V_{3}}{100}\right)+\left(\frac{V_{4}-V_{3}}{10}\right) \\
& I_{4}=0.04 \frac{d V_{4}}{d t}=0.04\left(s V_{2}-v_{2}(0)\right)=\left(\frac{V_{3}-V_{4}}{10}\right)+\left(\frac{0-V_{4}}{100}\right)+\left(\frac{V_{5}-V_{4}}{10}\right) \\
& I_{5}=0.05 \frac{d V_{5}}{d t}=0.05\left(s V_{5}-v_{5}(0)\right)=\left(\frac{V_{4}-V_{5}}{10}\right)+\left(\frac{0-V_{5}}{100}\right)
\end{aligned}
$$

Solve for the derivative

$$
\begin{aligned}
& s V_{1}=-21 V_{1}+10 V_{2}+v_{1}(0) \\
& s V_{2}=5 V_{1}-10.5 V_{2}+5 V_{3}+v_{2}(0) \\
& s V_{3}=3.33 V_{2}-7 V_{3}+3.33 V_{4}+v_{3}(0) \\
& s V_{4}=2.5 V_{3}-5.25 V_{4}+2.5 V_{5}+v_{4}(0) \\
& s V_{5}=2 V_{4}-2.2 V_{5}+v_{5}(0)
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& s\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
-21 & 10 & 0 & 0 & 0 \\
5 & -10.5 & 5 & 0 & 0 \\
0 & 3.33 & -7 & 3.33 & 0 \\
0 & 0 & 2.5 & -5.25 & 2.5 \\
0 & 0 & 0 & 2 & -2.2
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4} \\
V_{5}
\end{array}\right]+\left[\begin{array}{l}
v_{1}(0) \\
v_{2}(0) \\
v_{3}(0) \\
v_{4}(0) \\
v_{5}(0)
\end{array}\right] \\
& Y=V_{5}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] V_{1 . .5}+[0]
\end{aligned}
$$

Step 3: Find $\mathrm{Y}(\mathrm{s})$

```
A = [-21,10,0,0,0; 5,-10.5,5,0,0; ; 3.333,-7,3.333,0; ; 0,0,2.5,-5.25,2.5 ; 0,0,0,2,-2.2]
        -21.0000 
B=[10;10;10;10;10]
    1 0
    10
    10
    10
    10
C = [0,0,0,0,1];
D = 0;
Y = SS (A,B,C,D);
zpk(Y)
```


Step 4: Find $y(t)$.

```
t = [0:0.01:10]';
y = impulse(G,t);
plot(t,y)
```


Natural Response v5(t) for initial condition of $\{10,10,10,10,10\}$

Sidelight:

- Find the initial condition which decays as slow as possible.
- Find the initial condition which decays as slow as possible.

Solution: This is asking for the fast and slow eigenvector.

```
>> [a,b] = eig(A)
a =
    -0.9339 -0.5296 -0.4249 -0.3229 0.1366
    0.3511 -0.5133 -0.6118 -0.5870 0.2807
    -0.0675 0.6124 -0.0521 -0.5785 0.4269
        0.0088 -0.2780 0.6056 -0.1382 
    -0.0008 0.0610 -0.2752 0.4443 0.6403
b =
    -24.7599 rrrrr
```

- The slow eigenvector is in red. This mode decays as $\exp (-0.46 \mathrm{t})$
- The fast eigenvector is in blue. This mode decays as $\exp (-24.76 \mathrm{t})$

Example 3: RLC Circuit

Find V4(t) assuming

- $\mathrm{v} 2(0)=\mathrm{v} 4(0)=10 \mathrm{~V}$
- $\mathrm{i} 1(0)=\mathrm{i} 3(0)=2 \mathrm{~A}$

Solution: Use state-space (current loops or voltage nodes alwo work but state-space is easier if you have access to Matlab)

Step 1: Define the state variables. These define the energy in the system

$$
X=\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]
$$

Step 2: Define the change in the states. This comes from

$$
\begin{aligned}
& v=L \frac{d i}{d t} \\
& i=C \frac{d v}{d t}
\end{aligned}
$$

which leads to

$$
\begin{aligned}
& v_{1}=0.5 \frac{d i_{i}}{d t}=0.5\left(s I_{1}-i_{1}(0)\right)=\left(0-0.2 I_{1}\right)-V_{2} \\
& i_{2}=0.1 \frac{d v_{2}}{d t}=0.1\left(s V_{2}-v_{2}(0)\right)=I_{1}-I_{3} \\
& v_{3}=0.2 \frac{d i_{3}}{d t}=0.2\left(s I_{3}-i_{3}(0)\right)=V_{2}-0.3 I_{3}-V_{4} \\
& i_{4}=0.25 \frac{d v_{4}}{d t}=0.25\left(s V_{4}-v_{4}(0)\right)=I_{3}
\end{aligned}
$$

Step 3: Rewrite these equations as

$$
\begin{aligned}
& s I_{1}=-0.4 I_{1}-2 V_{2}+i_{1}(0) \\
& s V_{2}=10 I_{1}-10 I_{3}+v_{2}(0) \\
& s I_{3}=5 V_{2}-1.5 I_{3}-5 V_{4}+i_{3}(0) \\
& s V_{4}=4 I_{3}+v_{4}(0)
\end{aligned}
$$

Place in matrix form

$$
\begin{aligned}
& s\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-0.4 & -2 & 0 & 0 \\
10 & 0 & -10 & 0 \\
0 & 5 & -1.5 & -5 \\
0 & 0 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+\left[\begin{array}{l}
i_{1}(0) \\
v_{2}(0) \\
i_{3}(0) \\
v_{4}(0)
\end{array}\right] \\
& Y=V_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
V_{2} \\
I_{3} \\
V_{4}
\end{array}\right]+[0]
\end{aligned}
$$

Solve in Matlab

```
>>A=[-0.4,-2,0,0;10,0,-10,0 ; 0,5,-1.5,-5 ; 0,0,4,0]
    -0.4000 
>> B = [2 ; 10; 2 ; 10]
        2
        2
>>C=[0,0,0,1];
>> D = 0;
>> Y = SS (A,B,C,D);
>> zpk(Y)
Y(s) = ( 10 (s+1.279) (s^2 + 1.421s+89.1)
>> t = [0:0.01:10]';
>> plot(t,y)
```


$$
y(t)=v 4(t)
$$

Just for fun,

- Find the initial conditions which make this system decay as slow as possible.
- Find the initial conditions which make this system decay as slow as possible.

Solution: Find the eigenvalues and eigenvectors

```
>> [m,v] = eig(A)
m =
\begin{tabular}{|c|c|c|c|}
\hline \(45+0.1696 i\) & \(0.0045-0.1696 i\) & 0.0778 - 0.4519i & \(0.0778+0.4519 i\) \\
\hline 0.7808 & 0.7808 & -0.4887-0.0621i & \(-0.4887+0.0621 i\) \\
\hline \(0.0549-0.5490 i\) & \(0.0549+0.5490 i\) & \(0.0496-0.3489 i\) & \(0.0496+0.3489 i\) \\
\hline \(0.2391-0.0071 i\) & -0.2391 + 0.0071i & -0.6503 & -0.6503 \\
\hline
\end{tabular}
v =
    -0.6449 +9.2031i 
```

Slow: Make the initial conditions equal to the slow eigenvector. This is complex, so you can use the real part(to get cosine) or imaginary part (to get sine).

```
X0 = imag(m(:,4))
    0.4519
    0.0621
    0.3489
        0
Y = ss(A,X0,C,D);
y = impulse(Y, t);
plot(t,y)
```


V4(t) when the initial condition is equal to the slow eigenvector

Fast: Make the initial condition equal to the fast eigenvector. Again, use the real part for cosine, imaginary part for sine.

```
>> X0 = real(m(:,1) )
XO=
            0.0045
            0.7808
            0.0549
            -0.2391
>> Y = SS(A,XO,C,D);
>> Y = impulse(Y, t);
>> plot(t,Y)
```


$\mathrm{V} 4(\mathrm{t})$ when the initial condition is equal to the fast eigenvector

