
Circuit Analysis with LaPlace Transforms

Background

Phasors allow you to analyze circuits with inductors and capacitors just like you analyze resistor circuits - the

only difference is you need to use complex numbers.  With phasor analysis, the basic assumption is that all

functions are in the form of

x = a ⋅ e jωt

resulting in the phasor impedance for an inductor and capacitor being:

L → jωL

C →
1

jωC

In contrast, LaPlace transforms assume all functions are in the form of

x(t) = a ⋅ est

resulting in the LaPlace impedance being:

L → Ls

C →
1

Cs

Component Phasor Impedance LaPlace

Impedance

R R R

L jwL Ls

C 1 / jwC 1 / Cs

With LaPlace impedance's, everything that worked in Circuits I and II still apply:

Impedance's in series add:  A resistor, inductor, and capacitor in series have an impedance of:

Z = R + Ls +
1

Cs

Impedance's in parallel add as the sum of the inverses, inverted.  A resistor, inductor, and capacitor in

parallel have a total impedance of

Z = 


1

R
+

1

Ls
+

1

1/Cs




−1

Current loops still work:  The sum of the voltages around any closed path has to add to zero.

Voltage nodes still work:  The sum of the current from a node must add to zero.

There is a short-cut for analyzing electrical circuits using LaPlace transforms, however.  This is to use a

formulation called state space.
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State Space

One way to describe a dynamic system is with a transfer function:

Y = G(s) ⋅ U

Another way is to put the system in matrix form (called state space).  If the energy in the system is defined by

vector X (think of X as the voltages on capacitors and current in inductors: things that define the energy in the

system), then the change in energy along with the output as  function of the system state can be written as

X = AX + BU

Y = CX + DU

With state-space, there is a third way to input a dynamic system into Matlab:

G = ss(A, B, C, D);

It's probably easiest to explain this with examples.

State-Space and Natural Responses

Example 1:  For the following circuit, find the voltage, y(t) = v4(t) assuming v1(0) = v2(0) = 10.

0.01F 0.02F

10 10

100 100

V1 V2

I1 I2

Zc = 1/Cs Zc = 1/Cs

2nd-Order System:  (there are two energy storage elements)

Step 1:  Define the system states.

This is the voltage across the capacitors and the current through inductors.  This defines the energy in the system.

X =





V1

V2





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Step 2:  Define the change in energy in terms of the input (none here) and the system states

From the equations for a capacitor

ic = C
dv

dt

In the LaPlace domain:

Ic = C(sV − v(0))

Defining the current to each capacitor in terms of the states

I1 = 0.01(sV1 − v1(0)) = 


0−V1

10

 + 

V2−V1

10

 + 

0−V1

100



I2 = 0.02(sV2 − v2(0)) = 


0−V2

100

 + 

V1−V2

10



Group terms:

* 21sV1 = −21V1 + 10V2 + v1(0)

* 5sV2 = 5V1 − 5.5V2 + v2(0)

Step 3:  Solve for y = V2.   Place this in matrix (state-space form)

s





V1

V2




 =






−21 10

5 −5.5










V1

V2




 +






v1(0)

v2(0)






Y = V2 =  0 1 





V1

V2




 + [0]

In Matlab:

>> A = [-21,10 ; 5, -5.5]

  -21.0000   10.0000

    5.0000   -5.5000

>> B = [10 ; 10]

    10

    10

>> C = [0,1];

>> D = 0;

>> Y = ss(A,B,C,D);

At this point you can solve for Y(s):

>> zpk(Y)

 

         10 (s+26)

Y(s) = -------------------

       (s+23.74) (s+2.759)
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y(t) is found using the impulse response function for Y(s)

 

t = [0:0.01:5]';

y = impulse(Y, t);

plot(t,y)

y(t) for initial conditions of v1(0) = v2(0) = 10

Eigenvalues and Eigenvectors:  The eigenvalues of matrix X are  the poles of the system.  This tells you how

the system behaves

>> eig(A)

  -23.7411

   -2.7589

The eigenvectors of A tell you what behaves each way:

>> [a,b] = eig(A)

a = 

   -0.9644   -0.4807

    0.2644   -0.8769

b = 

  -23.7411         0

         0   -2.7589

If the initial condition was  (or a scalar multiple of this), then y(t) decays as 





−0.9644

0.2644




 e−23.74t

If the initial condition was  (or a scalar multiple of this), then y(t) decays as 





−0.4807

−0.8679




 e−2.7589t
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To illustrate this, using the fast (first) eigenvector:

>> B = a(:,1)

   -0.9644

    0.2644

>> Y = ss(A,B,C,D);

>> y = impulse(Y, t);

>> plot(t,y)

y(t) when the initial conditions are equal to the fast eigenvector

Using the slow (second) eigenvector:

>> B = -a(:,2)

    0.4807

    0.8769

>> Y = ss(A,B,C,D);

>> y = impulse(Y, t);

>> plot(t,y)

 

y(t) when the initial conditions are equal to the slow eigenvector
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Example 2: 5-stage RC filter.

Find V5(t) if the initial condition is v1(0) = v2(0) = v3(0) = v4(0) = v5(0) = 10V

10 10 10 10 10

100 100 100 100 100
0.01F 0.02F 0.03F 0.04F 0.05F

V1 V2 V3 V4 V5

I1 I2 I3 I4 I5

This is where state-space really shines.  You could use voltage nodes or current loops and solve for V5.  That will

take about two hours.  It's much easier with state space.

Step 1:  Define the state variables.  The energy in the system is defined by

X =















V1

V2

V3

V4

V5















Step 2:  Define the change in the state variables in terms of the other states

I1 = 0.01
dV1

dt
= 0.01(sV1 − v1(0)) = 


0−V1

10

 + 

0−V1

100

 + 

V2−V1

10



I2 = 0.02
dV2

dt
= 0.02(sV2 − v2(0)) = 


V1−V2

10

 + 

0−V2

100

 + 

V3−V2

10



I3 = 0.03
dV3

dt
= 0.03(sV3 − v3(0)) = 


V2−V3

10

 + 

0−V3

100

 + 

V4−V3

10



I4 = 0.04
dV4

dt
= 0.04(sV2 − v2(0)) = 


V3−V4

10

 + 

0−V4

100

 + 

V5−V4

10



I5 = 0.05
dV5

dt
= 0.05(sV5 − v5(0)) = 


V4−V5

10

 + 

0−V5

100



Solve for the derivative
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sV1 = −21V1 + 10V2 + v1(0)

sV2 = 5V1 − 10.5V2 + 5V3 + v2(0)

sV3 = 3.33V2 − 7V3 + 3.33V4 + v3(0)

sV4 = 2.5V3 − 5.25V4 + 2.5V5 + v4(0)

sV5 = 2V4 − 2.2V5 + v5(0)

Place in matrix form

s















V1

V2

V3

V4

V5














=















−21 10 0 0 0

5 −10.5 5 0 0

0 3.33 −7 3.33 0

0 0 2.5 −5.25 2.5

0 0 0 2 −2.2





























V1

V2

V3

V4

V5














+















v1(0)

v2(0)

v3(0)

v4(0)

v5(0)















Y = V5 =  0 0 0 0 1 V1..5 + [0]

Step 3:   Find Y(s)

A = [-21,10,0,0,0 ; 5,-10.5,5,0,0 ; 0,3.333,-7,3.333,0 ; 0,0,2.5,-5.25,2.5 ; 0,0,0,2,-2.2]

  -21.0000   10.0000         0         0         0

    5.0000  -10.5000    5.0000         0         0

         0    3.3330   -7.0000    3.3330         0

         0         0    2.5000   -5.2500    2.5000

         0         0         0    2.0000   -2.2000

B = [10;10;10;10;10]

    10

    10

    10

    10

    10

C = [0,0,0,0,1];

D = 0;

Y = ss(A,B,C,D);

zpk(Y)

           10 (s+24.75) (s+11.46) (s+6.061) (s+3.48)

Y(s = --------------------------------------------------

      (s+24.76) (s+11.31) (s+6.601) (s+2.822) (s+0.4601)
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Step 4:  Find y(t).

t = [0:0.01:10]';

y = impulse(G,t);

plot(t,y)

Natural Response v5(t) for initial condition of {10, 10, 10, 10, 10}

Sidelight:  

Find the initial condition which decays as slow as possible.

Find the initial condition which decays as slow as possible.

Solution:  This is asking for the fast and slow eigenvector.

>> [a,b] = eig(A)

a = 

   -0.9339   -0.5296   -0.4249   -0.3229    0.1366

    0.3511   -0.5133   -0.6118   -0.5870    0.2807

   -0.0675    0.6124   -0.0521   -0.5785    0.4269

    0.0088   -0.2780    0.6056   -0.1382    0.5570

   -0.0008    0.0610   -0.2752    0.4443    0.6403

b =

  -24.7599         0         0         0         0

         0  -11.3067         0         0         0

         0         0   -6.6013         0         0

         0         0         0   -2.8219         0

         0         0         0         0   -0.4601

The slow eigenvector is in red.  This mode decays as exp(-0.46t)

The fast eigenvector is in blue.  This mode decays as exp(-24.76t)
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Example 3: RLC Circuit

Find V4(t) assuming

v2(0) = v4(0) = 10V

i1(0) = i3(0) = 2A

Y1 Y2

I1

V2

+

-

I3

V4

+

-

0.2 0.30.5H 0.2H

0.1F 0.25F

+ -V1
+ -V3

I2 I4

Solution:  Use state-space (current loops or voltage nodes alwo work but state-space is easier if you have access

to Matlab)

Step 1:  Define the state variables.  These define the energy in the system

X =













I1

V2

I3

V4













Step 2:  Define the change in the states.  This comes from

v = L
di

dt

i = C
dv

dt

which leads to

v1 = 0.5
dii

dt
= 0.5(sI1 − i1(0)) = (0 − 0.2I1) − V2

i2 = 0.1
dv2

dt
= 0.1(sV2 − v2(0)) = I1 − I3

v3 = 0.2
di3

dt
= 0.2(sI3 − i3(0)) = V2 − 0.3I3 − V4

i4 = 0.25
dv4

dt
= 0.25(sV4 − v4(0)) = I3
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Step 3:  Rewrite these equations as

sI1 = −0.4I1 − 2V2 + i1(0)

sV2 = 10I1 − 10I3 + v2(0)

sI3 = 5V2 − 1.5I3 − 5V4 + i3(0)

sV4 = 4I3 + v4(0)

Place in matrix form

s













I1

V2

I3

V4













=













−0.4 −2 0 0

10 0 −10 0

0 5 −1.5 −5

0 0 4 0

























I1

V2

I3

V4













+













i1(0)

v2(0)

i3(0)

v4(0)













Y = V4 =  0 0 0 1 













I1

V2

I3

V4













+ [0]

Solve in Matlab

>> A = [-0.4,-2,0,0 ; 10,0,-10,0 ; 0,5,-1.5,-5 ; 0,0,4,0]

   -0.4000   -2.0000         0         0

   10.0000         0  -10.0000         0

         0    5.0000   -1.5000   -5.0000

         0         0    4.0000         0

>> B = [2 ; 10 ; 2 ; 10]

     2

    10

     2

    10

>> C = [0,0,0,1];

>> D = 0;

>> Y = ss(A,B,C,D);

>> zpk(Y)

 

           10 (s+1.279) (s^2 + 1.421s + 89.1)

Y(s) = -------------------------------------------

       (s^2 + 0.6102s + 4.7) (s^2 + 1.29s + 85.11)

>> t = [0:0.01:10]';

>> plot(t,y)
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y(t) = v4(t)

Just for fun,

Find the initial conditions which make this system decay as slow as possible.

Find the initial conditions which make this system decay as slow as possible.

Solution:  Find the eigenvalues and eigenvectors

>> [m,v] = eig(A)

m = 

   0.0045 + 0.1696i   0.0045 - 0.1696i   0.0778 - 0.4519i   0.0778 + 0.4519i

   0.7808             0.7808            -0.4887 - 0.0621i  -0.4887 + 0.0621i

   0.0549 - 0.5490i   0.0549 + 0.5490i   0.0496 - 0.3489i   0.0496 + 0.3489i

  -0.2391 - 0.0071i  -0.2391 + 0.0071i  -0.6503            -0.6503          

v =

  -0.6449 + 9.2031i        0                  0                  0          

        0            -0.6449 - 9.2031i        0                  0          

        0                  0            -0.3051 + 2.1463i        0          

        0                  0                  0            -0.3051 - 2.1463i

Slow:  Make the initial conditions equal to the slow eigenvector.  This is complex, so you can use the real part(to

get cosine) or imaginary part (to get sine).

X0 = imag(m(:,4))

    0.4519

    0.0621

    0.3489

         0

Y = ss(A,X0,C,D);

y = impulse(Y, t);

plot(t,y)
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V4(t) when the initial condition is equal to the slow eigenvector

Fast:  Make the initial condition equal to the fast eigenvector.  Again, use the real part for cosine, imaginary part

for sine.

>> X0 = real( m(:,1) )

X0 =

    0.0045

    0.7808

    0.0549

   -0.2391

>> Y = ss(A,X0,C,D);

>> y = impulse(Y, t);

>> plot(t,y)

V4(t) when the initial condition is equal to the fast eigenvector
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