z-Transform

Table of z-transforms:

$$
\begin{aligned}
x(k) & \leftrightarrow X(z) \\
\delta(k) & \leftrightarrow 1 \\
u(k) & \leftrightarrow\left(\frac{z}{z-1}\right) \\
k u(k) & \leftrightarrow\left(\frac{z}{(z-1)^{2}}\right) \\
a^{k} u(k) & \leftrightarrow\left(\frac{z}{z-a}\right) \\
2 b a^{k} \cos (k \theta+\phi) u(k) & \leftrightarrow(b \angle \phi)\left(\frac{z}{z-a \angle \theta}\right)+(b \angle-\phi)\left(\frac{z}{z-a<-\theta}\right) \\
\cos (k \theta) u(k) & \leftrightarrow\left(\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}\right) \\
\sin (k \theta) u(k) & \leftrightarrow\left(\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}\right)
\end{aligned}
$$

Introduction

LaPlace transform convert differential equations into algebraic equations in 's' - with the assumption that algebra is easier than calculus. The basic assumption behind the LaPlace transform is that all functions are in the form of

$$
y(t)=a \cdot e^{s t}
$$

With this assumption, differentiation becomes multiplication by 's'

$$
\frac{d y}{d t}=s \cdot a e^{s t}=s y
$$

Likewise, you can read 'sy' as 'the derivative of y '.

The z-transform converts difference equations into algebraic equations in 'z'. The basic assumption behind z-transform is that all functions are in the form of

$$
y(k)=a \cdot z^{k}
$$

With this assumption, moving forward in time becomes multiplying by 'z'

$$
y(k+1)=a \cdot z^{k+1}=z \cdot a z^{k}=z y(k)
$$

Likewise, you can read 'zy' as 'the next value of y '.

LaPlace transforms also allow you to solve differential equations with forcing functions without having to use colvolution. Similarly, z-transforms allow you to solve difference equations with forcing functions without having to use convolution as well.

z-transform

The definition of the z-transform is

$$
X(z)=\sum_{n=1}^{\infty} x(n) z^{-n}
$$

Let's start with the z-transform of a delta function. In discrete-time, a delta function is

$$
\delta(k)=\left\{\begin{array}{cc}
1 & k=0 \\
0 & \text { otherwise }
\end{array}\right.
$$

The z-transform for a delta function is likewise 1

$$
\delta(k) \leftrightarrow 1
$$

Almost by definition, if you have $\mathrm{x}(\mathrm{k})$:

k	-3	-2	-1	0	1	2	3	4	5
$\mathrm{x}(\mathrm{k})$	0	0	0	$\mathrm{x}(0)$	$\mathrm{x}(1)$	$\mathrm{x}(2)$	$\mathrm{x}(3)$	$\mathrm{x}(4)$	$\mathrm{x}(5)$

this can be written as

$$
x(k)=x(0) \delta(k)+x(1) \delta(k-1)+x(2) \delta(k-2)+\ldots
$$

Since 'zx' means 'the next value of x '

$$
z x(k)=x(k+1)
$$

you also have ' $\mathrm{z}-1 \mathrm{x}$ ' means 'the previous value of x ' or ' x delayed one sample'

$$
z^{-1} x(k)=x(k-1)
$$

Similarly, you can write $x(k)$ as

$$
x=x(0)+z^{-1} x(1)+z^{-2} x(2)+z^{-3} x(3)+\ldots
$$

which is the definition of the z -transform.

z-Transforms for Different Functions, x(k)

Delta Function: As shown previously, the z-transform for a delta function is one

$$
\delta(k) \leftrightarrow 1
$$

It's value vs. time is

k	-3	-2	-1	0	1	2	3	4	5
$\delta(k)$	0	0	0	1	0	0	0	0	0

Unit Step: The unit step function is

$$
u(k)=\left\{\begin{array}{cc}
1 & k \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

To find the z-transform, use the following trick.

- Start with $u(k)$
- Subtract $\mathrm{u}(\mathrm{k}-1)$
- This gives a delta function. Take the z-transform since we know the z-transform of a delta function
- The result must be the z -transform of $\mathrm{u}(\mathrm{k})$

k	-3	-2	-1	0	1	2	3	4	5
$u(k)$	0	0	0	1	1	1	1	1	1
$z^{-1} u(k)$	0	0	0	0	1	1	1	1	1
$=\left(1-z^{-1}\right) u(k)$	0	0	0	1	0	0	0	0	0

The difference is a delta function, which has a LaPlace transform of 1, so

$$
\begin{aligned}
& \left(1-z^{-1}\right) u(k) \leftrightarrow 1 \\
& u(k) \leftrightarrow\left(\frac{1}{1-z^{-1}}\right)=\left(\frac{z}{z-1}\right)
\end{aligned}
$$

$$
u(k) \leftrightarrow\left(\frac{z}{z-1}\right)
$$

Unit Ramp:

$$
x(k)=k u(k)
$$

Use the trick of finding what to subtract to give something you know: a unit step or a delta function

k	-3	-2	-1	0	1	2	3	4	5
$k u(k)$	0	0	0	0	1	2	3	4	5
$Z \cdot k u(k)$	0	0	0	1	2	3	4	5	6
$=(1-z) k u(k)$	0	0	0	-1	-1	-1	-1	-1	-1

We know the z-transform of the result: a negative step. So

$$
\begin{aligned}
& (1-z) k u(k) \leftrightarrow-\left(\frac{z}{z-1}\right) \\
& k u(k) \leftrightarrow\left(\frac{z}{(z-1)^{2}}\right)
\end{aligned}
$$

Decaying Exponential:

$$
x(k)=a^{k} u(k)
$$

Again, try to find what it takes to result in a step or a delta function: Start with delaying $x(k)$

k	-3	-2	-1	0	1	2	3	4	5
$a^{k} u(k)$	0	0	0	1	a	a^{2}	a^{3}	a^{4}	a^{5}
$Z^{-1} \cdot a^{k} u(k)$	0	0	0	0	1	a	a^{2}	a^{3}	a^{4}

This doesn't quite work. Multiply the delayed signal by 'a' and subtract

k	-3	-2	-1	0	1	2	3	4	5
$a^{k} u(k)$	0	0	0	1	a	a^{2}	a^{3}	a^{4}	a^{5}
$a z^{-1} \cdot a^{k} u(k)$	0	0	0	0	a	a^{2}	a^{3}	a^{4}	a^{5}
$\left(1-a z^{-1}\right) \cdot a^{k} u(k)$	0	0	0	1	0	0	0	0	0

This is a delta function - whose z -transform we know

$$
\begin{aligned}
& \left(1-a z^{-1}\right) \cdot a^{k} u(k) \leftrightarrow 1 \\
& a^{k} u(k) \leftrightarrow\left(\frac{1}{1-a z^{-1}}\right)
\end{aligned}
$$

$$
a^{k} u(k) \leftrightarrow\left(\frac{z}{z-a}\right)
$$

Exponential Sinusoid:

If 'a' is a complex number in the previous case, you have a decaying sinusoid. Let

$$
X(z)=(b \angle \phi)\left(\frac{z}{z-a \angle \theta}\right)+(b \angle-\phi)\left(\frac{z}{z-a \angle-\theta}\right)
$$

From the previous solution

$$
x(k)=(b \angle \phi) \cdot(a \angle \theta)^{k}+(b \angle-\phi) \cdot(a \angle-\theta)^{k}
$$

This is shorthand notation for

$$
\begin{aligned}
& x(k)=\left(b e^{j \phi}\right) \cdot\left(a e^{j \theta}\right)^{k}+\left(b e^{-j \phi}\right) \cdot\left(a e^{-j \theta}\right)^{k} \\
&=\left(b e^{j \phi}\right) \cdot\left(a^{k} e^{j k \theta}\right)+\left(b e^{-j \phi}\right) \cdot\left(a^{k} e^{-j k \theta}\right) \\
&=b a^{k} \cdot e^{j(k \theta+\phi)}+b a^{k} \cdot e^{-j(k \theta+\phi)} \\
&=2 b a^{k} \cdot\left(\frac{e^{j(k \theta+\phi)}+e^{-j(k \theta+\phi)}}{2}\right) \\
&=2 b a^{k} \cos (k \theta+\phi) \\
& \quad \quad 2 b a^{k} \cos (k \theta+\phi) \leftrightarrow(b \angle \phi)\left(\frac{z}{z-a \angle \theta}\right)+(b \angle-\phi)\left(\frac{z}{z-a \angle-\theta}\right)
\end{aligned}
$$

With this, you can find the z-transform and inverse-z transform of most functions.

z-Transform Examples

Example 1: Find the z-transform for

$$
x(k)=\left(3+4 \cdot 0.9^{k}+5 \cdot 0.8^{k}\right) u(k)
$$

Solution: Treat as three separate inputs

$$
X(z)=3\left(\frac{z}{z-1}\right)+4\left(\frac{z}{z-0.9}\right)+5\left(\frac{z}{z-0.8}\right)
$$

(You could simplify if you like - but this answer is correct.)

Example 2: Find the z-transform for

$$
x(k)=\left(3+4 \cdot 0.9^{k} \cos (0.2 k+0.3)\right) u(k)
$$

Solution:

$$
X(z)=3\left(\frac{z}{z-1}\right)+\left(\left(\frac{2 \angle 0.3}{z-0.9 \angle 0.2}\right)+\left(\frac{2 \angle-0.3}{z-0.9 \angle-0.2}\right)\right)
$$

Example 3: Find the inverse z-transform for

$$
X(z)=\left(\frac{3 z}{(z-1)(z-0.9)(z-0.8)}\right)
$$

Solution: We're going to need a 'z' in the numerator, so take the partial fraction of

$$
\begin{aligned}
& X(z)=\left(\frac{3}{(z-1)(z-0.9)(z-0.8)}\right) z=\left(\left(\frac{a}{z-1}\right)+\left(\frac{b}{z-0.9}\right)+\left(\frac{c}{z-0.8}\right)\right) z \\
& a=\left(\frac{3}{(z-0.9)(z-0.8)}\right)_{z \rightarrow 1}=150 \\
& b=\left(\frac{3}{(z-1)(z-0.8)}\right)_{z \rightarrow 0.9}=-300 \\
& c=\left(\frac{3}{(z-1)(z-0.9)}\right)_{z \rightarrow 0.8}=150
\end{aligned}
$$

so

$$
\begin{aligned}
& X(z)=\left(\left(\frac{150}{z-1}\right)+\left(\frac{-300}{z-0.9}\right)+\left(\frac{150}{z-0.8}\right)\right) z \\
& X(z)=\left(\frac{150 z}{z-1}\right)+\left(\frac{-300 z}{z-0.9}\right)+\left(\frac{150 z}{z-0.8}\right)
\end{aligned}
$$

From our table

$$
x(k)=\left(150-300 \cdot(0.9)^{k}+150 \cdot(0.8)^{k}\right) \cdot u(k)
$$

Example 4: Find the inverse z-transform for

$$
X(z)=\left(\frac{3}{(z-0.9)\left(z^{2}-1.8 z+0.9\right)}\right)
$$

Solution: We're going to need a 'z' in the numerator, so take the partial fraction of

$$
\begin{aligned}
& X(z)=\left(\frac{3}{z(z-0.9)(z-0.9487 \angle 0.3218)(z-0.9487 \angle-0.3218)}\right) z \\
& \quad=\left(\left(\frac{a}{z}\right)+\left(\frac{b}{z-0.9}\right)+\left(\frac{c}{z-0.9487 \angle 0.3218}\right)+\left(\frac{d}{z-0.9487 \angle-0.3218}\right)\right) z \\
& a=\left(\frac{3}{(z-0.9)(z-0.9487 \angle 0.3218)(z-0.9487 \angle-0.3218)}\right)_{z \rightarrow 0}=-3.7037 \\
& b=\left(\frac{3}{z(z-0.9487 \angle 0.3218)(z-0.9487 \angle-0.3218)}\right)_{z \rightarrow 0.9}=37.037
\end{aligned}
$$

$$
\begin{aligned}
& c=\left(\frac{3}{z(z-0.9)(z-0.9487 \angle-0.3218)}\right)_{z=0.9487 \angle 0.3218}=17.5682 \angle 2.8198 \\
& d=\left(\frac{3}{z(z-0.9)(z-0.9487 \angle 0.3218)}\right)_{z=0.9487 \angle-0.3218}=17.5682 \angle-2.8198
\end{aligned}
$$

so

$$
\begin{gathered}
X(z)=\left(\left(\frac{-3.7037}{z}\right)+\left(\frac{37.037}{z-0.9}\right)+\left(\frac{17.5682 \angle 2.8198}{z-0.9487 \angle 0.3218}\right)+\left(\frac{17.5682 \angle-2.8198}{z-0.9487 \angle-0.3218}\right)\right) z \\
X(z)=-3.7037+\left(\frac{37.037 z}{z-0.9}\right)+\left(\frac{z 17.5682 \angle 2.8198}{z-0.9487 \angle 0.3218}\right)+\left(\frac{z 17.5682 \angle-2.8198}{z-0.9487 \angle-0.3218}\right) \\
x(k)=\left(-3.7037 \delta(k)+37.037(0.9)^{k}+35.1724 \cdot(0.9487)^{k} \cos (0.3128 k+2.8198)\right) u(\mathrm{k})
\end{gathered}
$$

