Properties of z-Transform

Properties of z-Transforms

Linearity: $\quad a x(k)+b y(k) \leftrightarrow a X(z)+b Y(z)$
Time Delay: $\quad x(k-1) \leftrightarrow\left(\frac{1}{z}\right) X(z)$
Convolution: $\quad x(k) * * y(k)=X(z) Y(z)$
Initial Value: $x(0)=\lim _{z \rightarrow \infty}(X(z))$
Final Value: $\quad x(\infty)=\lim _{z \rightarrow 1}((z-1) X(z))$

Proofs

Linearity: $\quad a x(k)+b y(k) \leftrightarrow a X(z)+b Y(z)$
Proof:

$$
\begin{aligned}
& Z(a x(k)+b y(k))=\sum_{n=0}^{\infty} z^{-n}(a x(n)+b y(n)) \\
& ==\sum_{n=0}^{\infty} z^{-n} a x(n)+z^{-n} b y(n) \\
& = \\
& =a \sum_{n=0}^{\infty} z^{-n} x(n)+b \sum_{n=0}^{\infty} y(n) \\
& = \\
& =a X(z)+b Y(z)
\end{aligned}
$$

Time Delay: $\quad x(k-1) \leftrightarrow z^{-1} X(z)$
Proof:

$$
Z(x(k-1))=\sum_{n=0}^{\infty} z^{-n}(x(n-1))
$$

Do a change in variable:

$$
\begin{aligned}
\mathrm{m}=\mathrm{n}-1 & \\
& =\sum_{m=-1}^{\infty} Z^{-(m+1)} x(m)=\sum_{m=0}^{\infty} Z^{-1} Z^{-m} X(m) \\
& =Z^{-1} X(z)
\end{aligned}
$$

Convolution: $\quad \sum_{n=0}^{\infty} x(k-n) y(n)=X(z) Y(z)$
Proof:

$$
\begin{aligned}
X(z) Y(z) & =\left(x_{0}+z^{-1} x_{1}+z^{-2} x_{2}+z^{-3} x_{3}+\ldots\right)\left(y_{0}+z^{-1} y_{1}+z^{-2} y_{2}+z^{-3} y_{3}+\ldots\right) \\
\quad= & \sum_{k} x_{n-k} y_{k} z^{-n} \\
\quad= & x(k) * * y(k)
\end{aligned}
$$

Initial Value: $x(0)=\lim _{z \rightarrow \infty}(X(z))$
Proof: Express $\mathrm{x}(\mathrm{k})$ as

$$
x(k)=x(0)+\left(\frac{x(1)}{z}\right)+\left(\frac{x(2)}{z^{2}}\right)+\left(\frac{x(3)}{z^{3}}\right)+\ldots
$$

As $z \rightarrow \infty$

$$
x(k)=x(0)
$$

Final Value: $\quad x(\infty)=\lim _{z \rightarrow 1}((z-1) X(z))$
Proof: Do a partial fraction expansion of $\mathrm{X}(\mathrm{z})$

$$
X(z)=\left(\frac{a}{z-1}\right)+\left(\frac{b}{z-c}\right)+\ldots
$$

The inverse-z transform will be

$$
x(k)=a+b \cdot c^{k}+\ldots
$$

As k goes to infinity, all terms go to zero (assuming the system is stable) except for the first term. The way you find 'a' using partial fractions is

$$
a=\lim _{z \rightarrow 1}((z-1) \cdot X(z))
$$

z-Transforms and Markov Chains

A Markov chain is a discrete-time function of the form

$$
x(k+1)=A x(k)
$$

with an initial condition, $x(0)$. For example, assume three people are tossing a ball around. Every 1 second, the ball is tossed:

- Player \#1
- Keeps the ball 10% of the time
- Passes it to player \#2 50% of the time, and
- Passes to player \#3 40% of the time.
- Player \#2
- Passes the ball to player \#1 80% of the time, and
- Passes the ball to player \#3 20% of the time.
- Player \#3
- Passes the ball to player \#2 20% of the time, and
- Keeps the ball 80% of the time.

A description of this game is

$$
x(k+1)=\left[\begin{array}{ccc}
0.1 & 0.8 & 0 \\
0.5 & 0 & 0.2 \\
0.4 & 0.2 & 0.8
\end{array}\right] x(k)
$$

Note that the columns add up to 1.00: every second the ball goes somewhere with a probability of 1.00 . The entries for the 1st column are where the ball goes if player \#1 has the ball, the second column is where the ball winds up if player \#2 has the ball, etc.
In terms of z-transforms:

$$
z X=\left[\begin{array}{ccc}
0.1 & 0.8 & 0 \\
0.5 & 0 & 0.2 \\
0.4 & 0.2 & 0.8
\end{array}\right] X
$$

The final value theorem tells you who has the ball as time goes to infinity:

$$
X=\left[\begin{array}{ccc}
0.1 & 0.8 & 0 \\
0.5 & 0 & 0.2 \\
0.4 & 0.2 & 0.8
\end{array}\right] X
$$

meaning X is the eigenvector associated with the eigenvalue of 1.000

```
>> [m,v] = eig(A)
\begin{tabular}{rrr}
0.7636 & -0.5491 & 0.2883 \\
-0.6322 & -0.2487 & 0.3243 \\
-0.1314 & 0.7979 & 0.9009
\end{tabular}
\begin{tabular}{rrr}
-0.5623 & 0 & 0 \\
0 & 0.4623 & 0 \\
0 & 0 & 1.0000
\end{tabular}
```

The third eigenvector is proportional to the probability that any given player has the ball. All probabilities have to add to one, however. So.

```
>> V = m(:,3)
    0.2883
    0.3243
    0.9009
>> V / sum(V)
    0.1905
    0.2143
    0.5952
```

As k goes to infinity

- The probability that player \#1 has the ball is 0.1905
- The probability that player \#2 has the ball is 0.2143
- The probability that player \#3 has the ball is 0.5952

You can also get this result by passing the ball a large number of times

```
>> A^1000
```

0.1905	0.1905	0.1905
0.2143	0.2143	0.2143
0.5952	0.5952	0.5952

Example 2: Two people are playing tennis. Player \#1 has a 60% change of winning any given game. The match is over when one player is up two games. What is the probability that player \#1 will win the match?

Solution: This too is a Markov chain. If you define the states to be

$$
X=\left[\begin{array}{c}
x_{2} \\
x_{1} \\
x_{0} \\
x_{-1} \\
x_{-2}
\end{array}\right]=\left[\begin{array}{c}
\text { up } 2 \text { games } \\
\text { up } 1 \text { game } \\
\text { tied } \\
\text { down } 1 \text { game } \\
\text { down } 2 \text { games }
\end{array}\right]
$$

then

$$
X_{k+1}=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0.4 & 0 & 0.6 & 0 \\
0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 1
\end{array}\right] X_{k}
$$

(If you're up one game after k games (column \#2), then

- There is a 60% chance you'll be up 2 games after the next game
- There is a 40% chance you'll be even after the next game.

From the final value theorem:

$$
(z X)_{z=1}=\left[\begin{array}{ccccc}
1 & 0.6 & 0 & 0 & 0 \\
0 & 0 & 0.6 & 0 & 0 \\
0 & 0.4 & 0 & 0.6 & 0 \\
0 & 0 & 0.4 & 0 & 0 \\
0 & 0 & 0 & 0.4 & 1
\end{array}\right] X_{k}
$$

The eigenvector associated with $\lambda=1$ is

$$
\Lambda=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

which doesn't help: the final value is either you win (+2 games) or you lose (-2 games), or some combination thereof. Another solution is to play the game a bunch of times (like 1000 times)

```
>> A^1000
\begin{tabular}{rrrrr}
1.0000 & 0.8769 & 0.6923 & 0.4154 & 0 \\
0 & 0.0000 & 0 & 0.0000 & 0 \\
0 & 0 & 0.0000 & 0 & 0 \\
0 & 0.0000 & 0 & 0.0000 & 0 \\
0 & 0.1231 & 0.3077 & 0.5846 & 1.0000
\end{tabular}
```

If you start out even (column \#3),

- Player \#1 has a 69.23% chance of winning the match
- Player \#2 has a 30.77% chance of winning the match

If you give odds by giving player \#2 a win (column \#3)

- Player \#1 has a 41.54% chance of winning
- Player \#2 has a 58.46% chance of winning.

z-Transform and Moment Generating Functions

In statistics, they're called Moment Generating Functions. In ECE, they're called z-tansforms.

Problem:

- Let X be the number of times you have to roll a 10 -sided die until you roll a 1 .
- Then, roll a 4 -sided die until you get X ones.
- Let N be the total number of times you roll the dice.

What is the probability distribution of N ?

Solution: If you solve in the time-domain (or k domain), you need to use convolution. If you solve in the z-domain, you use multiplication.

The probability distribution of $x(k)$ is

$$
x(k)=0.1 \cdot 0.9^{k-1} \quad k>0
$$

This is an exponential distribution with a z-transform (or moment generating function if you're a statistics major) of

$$
X(z)=\left(\frac{0.1}{z-0.9}\right)
$$

The probability distribution of $y(k)$ is

$$
y(k)=0.25 \cdot(0.75)^{k-1} \quad k>0
$$

which has the z-transform of

$$
Y(z)=\left(\frac{0.25}{z-0.75}\right)
$$

The convolution of $x(k)$ and $y(k)$ is the product of $X(z)$ and $Y(z)$

$$
\begin{aligned}
& N(\mathrm{z})=X(\mathrm{z}) \cdot Y(\mathrm{z}) \\
& N=\left(\frac{0.1}{z-0.9}\right)\left(\frac{0.25}{z-0.75}\right)
\end{aligned}
$$

Taking the partial fraction expansion

$$
N=\left(\frac{0.1666}{z-0.9}\right)+\left(\frac{-0.1666}{z-0.75}\right)
$$

resulting in

$$
N=\left(\frac{1}{z}\right)\left(\left(\frac{0.1666 z}{z-0.9}\right)+\left(\frac{-0.1666 z}{z-0.75}\right)\right)
$$

$$
\begin{aligned}
& n(k)=\left(\frac{1}{z}\right)\left(\frac{0.9^{k}-0.75^{k}}{6}\right) u(k) \\
& n(k)=\left(\frac{0.9^{k-1}-0.75^{k-1}}{6}\right) u(k-1)
\end{aligned}
$$

$n(k)$: Probability of Rolling the dice k times

