## Evaluating Hybrid Systems

Now, find the output of a hybrid system: part digital, part analog.


Hybrid System: Part Discrete-Time, Part Continuous Time
Example 1: Find the step response where

$$
\begin{array}{ll}
K(z)=4\left(\frac{z-0.95}{z-0.8}\right) & \mathrm{T}=100 \mathrm{~ms} \\
G(s)=\left(\frac{3}{s^{2}+2.5 s+1}\right) &
\end{array}
$$

and

$$
x(k)=u(k)
$$

What the output should look like is something like this:



VisSim simulation of a hybrid system: a discrete-time system with a sampling rate of 100 ms driving an analog system Note that $\mathrm{w}(\mathrm{t})$ changes at discrete times (the sampling rate of $\mathrm{K}(\mathrm{z})$ whereas $\mathrm{y}(\mathrm{t})$ is analog

Solution \#1: Convert everything to the z-plane with a sampling rate of $\mathrm{T}=100 \mathrm{~ms}$

$$
G(s)=\left(\frac{3}{s^{2}+2.5 s+1}\right)=\left(\frac{3}{(s+0.5)(s+2)}\right)
$$

The poles map as

$$
z=e^{s T}
$$

$\mathrm{s}=-0.5$

$$
z=e^{-0.5 \cdot 0.1}=0.9512
$$

$\mathrm{s}=-2$

$$
z=e^{-2 \cdot 0.1}=0.8187
$$

so

$$
G(z) \approx\left(\frac{k}{(z-0.9512)(z-0.8187)}\right)
$$

Pick ' $k$ ' to make the DC gain match up

$$
\begin{aligned}
& \left(\frac{3}{(s+0.5)(s+2)}\right)_{s=0}=3 \\
& \left(\frac{k}{(z-0.9512)(z-0.8187)}\right)_{z=1}=3 \\
& k=0.0265 \\
& G(z) \approx\left(\frac{0.0265}{(z-0.9512)(z-0.8187)}\right)
\end{aligned}
$$

Add zeros at $\mathrm{z}=0$ to match the phase at some frequency, such as $0.1 \mathrm{rad} / \mathrm{sec}$

$$
\begin{aligned}
& \left(\frac{3}{(s+0.5)(s+2)}\right)_{s=j 0.1}=2.9381 \angle-14.1723^{0} \\
& \left(\frac{0.0265}{(z-0.9512)(z-0.8187)}\right)_{z=e^{j 0.1 T}}=2.9335 \angle-14.7499^{0}
\end{aligned}
$$

Each zero at $\mathrm{z}=0$ adds 0.57 degrees.

$$
z=e^{j 0.1 T}=1 \angle 0.5730^{0}
$$

To make the phase add up exactly, you need to add 1.0081 zeros at $\mathrm{z}=0$

$$
n=\left(\frac{14.7499^{0}-14.1723^{0}}{0.5730^{0}}\right)=1.0081
$$

Round to 1.00 . This gives

$$
G(z) \approx\left(\frac{0.0265 z}{(z-0.9512)(z-0.8187)}\right)
$$

Now we can analyze the system

$$
\begin{aligned}
& Y(z)=G(z) \cdot K(z) \cdot X(z) \\
& Y=\left(\frac{0.0265 z}{(z-0.9512)(z-0.8187)}\right) \cdot 4\left(\frac{z-0.95}{z-0.8}\right) \cdot\left(\frac{z}{z-1}\right) \\
& Y=\left(\frac{0.1060 z^{2}(z-0.95)}{(z-1)(z-0.9512)(z-0.8187)(z-0.8)}\right) \\
& Y=z\left(\frac{2.9952}{z-1}+\frac{-0.1238}{z-0.9512}+\frac{-25.3653}{z-0.8187}+\frac{22.4938}{z-0.8}\right)
\end{aligned}
$$

which gives

$$
y(k) \approx\left(2.9952-0.1238 \cdot 0.9512^{k}-25.3653 \cdot 0.8187^{k}+22.4838 \cdot 0.8^{k}\right) u(k)
$$

Solution \#2: Convert everything to the s-plane

$$
K(z)=4\left(\frac{z-0.95}{z-0.8}\right)
$$

$\mathrm{z}=0.95$

$$
\begin{aligned}
& z=e^{s T} \\
& s=\frac{1}{T} \ln (z)=-0.5129
\end{aligned}
$$

$\mathrm{z}=0.8$

$$
s=\frac{1}{T} \ln (z)=-2.2314
$$

so

$$
K(s) \approx k\left(\frac{s+0.5129}{s+2.2314}\right)
$$

Matching the DC gain

$$
\begin{aligned}
& 4\left(\frac{z-0.95}{z-0.8}\right)_{z=1}=1.00 \\
& k\left(\frac{s+0.5129}{s+2.2314}\right)_{s=0}=1.00 \\
& k=4.3506
\end{aligned}
$$

so

$$
K(s) \approx 4.3506\left(\frac{s+0.5129}{s+2.2314}\right)
$$

This results Y(s) being

$$
\begin{aligned}
& Y(s)=G(s) \cdot K(s) \cdot X(s) \\
& Y(s)=\left(\frac{3}{(s+0.5)(s+2)}\right) \cdot 4.3506\left(\frac{s+0.5129}{s+2.2314}\right) \cdot \frac{1}{s} \\
& Y(s)=\left(\frac{13.0517(s+0.5129)}{s(s+0.5)(s+2)(s+2.2314)}\right) \\
& Y(s)=\left(\frac{3}{s}+\frac{-0.1297}{s+0.5}+\frac{-27.9591}{s+2}+\frac{25.0887}{s+2.2314}\right)
\end{aligned}
$$

Taking the invers LaPlace transform

$$
y(t) \approx\left(3-0.1297 e^{-0.5 t}-27.9591 e^{-2 t}+25.0887 e^{-2.2314 t}\right) \cdot u(t)
$$

Comparing the two solutions in Matlab:

```
Ys = zpk(-0.5129,[0,-0.5,-2,-2.2314],13.0517);
t = [0:0.001:3]';
y = impulse(Ys,t);
k = [0:30]';
yk = 2.9952 - 0.1238*(0.9512.^k) - 25.3653*(0.8187.^k) + 22.4838 * (0.8 .^ k);
T = 0.1;
plot(t, y, '-', k*T,yk,'r.');
xlabel('Time (seconds)')
```



Solution for y: Converting to the s-plane (blue) and converting to the z-plane (red dots).

