
ECE 376 - Final Exam: Name __________________
Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.

1a) Binary Outputs:

1a) Give a circuit which allows a PIC to turn on and off a 32mW LED

Id = 10mA

Vd = 3.2V

For outputs less than 5V and less than 25mA, just use a resistor:

PIC

3.2V5.0V

10mA

180

1b) Give a circuit which allows a PIC to turn on and off a 30W LED

Vd = 10.0V

Id = 3.0A

For other outputs, use a transistor. Assume

A 20V power supply (arbitrary)

An NPN transistor with a gain of 200 (arbitrary - 6144 NPN transistor specs)

Rc:

Rc = 


20V−10V−0.2V

3A


 = 3.267Ω

Rb:

Ib >
Ic

β = 3A

200
= 15mA

Let Rb = 20mA

Rb = 


5V−0.7V

20mA


 = 215Ω

PIC

5.0V

20mA

215

RC1
0.7V

0.2V

10.2V

3A

20V

3.267

30W LED

2) Analog Inputs: Determine the voltage, resistance, and temperature if a PIC reads 417 on the A/D input

for the following circuit. Assume

R = 1100 + 100*(your birth month) + (your birth date). For example, May 14th would give R = 1514 Ohms.

Rt is a thermistor with the temperature - resistance relationship (T = temperature in degrees C)

R t = 2000 ⋅ exp 
4400

T+273
− 4400

298

Ω

R
1100 + 100*mo + day

raw A/D reading Vx
Volts

Rt
Ohms

T
Degrees C

1614 417 2.038V 1110 Ohms
varies with R

37.36C
varies with R

+5V

R

Rt

RA0
Vx

Vx = 


417

1023

 5V = 2.038V

Vx = 2.038V = 


R t

Rt+R


 5V

R t = 


2.038V

5V−2.038V


 1614Ω = 1110Ω

T = 37.360
C

3) C-Coding: Lights Out is a game where

You start the game by pressing RB0.

At the start, four random lights are turned on (PORTC = 0..15)

Once started, you can toggle any light along with its neighbors by pressing buttons RB0/RB1/RB2/RB3
For example, if you press RB1, lights RC1 is toggled along with its adjacent lights (toggle RC0/RC1/RC2).

The goal is to turn all of the light off with the minimum number or button presses.

Write a C program which corresponds with the following flow chart for the game of Lights Out:

void main(void) {

ADCON1 = 0x0F;

TRISB = 0xFF;
TRISC = 0x00;

while(1) {

 do {
 PORTC = (PORTC + 1) % 15;
 } while(!RB0);

 do {

 while(PORTB);

// while(PORTB == 0);

 if(RB0) PORTC = PORTC ^ 0x03;
 if(RB1) PORTC = PORTC ^ 0x07;
 if(RB2) PORTC = PORTC ^ 0x0E;
 if(RB3) PORTC = PORTC ^ 0x0C;

 } while(PORTC);

 }

note: game won't quite work as shown.

When you press a button, you need to wait

for it to be released. Add the section in blue

to fix this.

Start

PORTB = Input

PORTC = Output

RB0 = 1?

increment PORTC

Any button

pressed?

yes

no

Button

Pressed?
RB0 RB1

RB2 RB3

none

Toggle

RC0,RC1

Toggle

RC0,1,2
Toggle

RC1,2,3

Toggle

RC2,3

mod 15

no

yes

PORTC = 0?
yes

new game

no

keep playing

4) C Coding with Analog Inputs: Write a C subroutine which turns your PIC in to a bar-graph for voltage.

When called,

The subroutine reads the A/D input (0..1023)

It then turns on LEDs on PORTC:PORTD to display the corresponding voltage as a bar graph:
0V turns off all of the LEDs

1V turns on 1/5th of the LEDs

2V turns on 2/5ths of the LEDs

etc.

For example, if 2.00V was input on the A/R reading, the first 6 LEDs on PORTD would turn on.

PORTC PORTD

0V1V2V3V4V5V

void BarGraph(void) {

 unsigned int A2D;

 A2D = A2D_Read(0);

 if (A2D < 60) { PORTC = 0x00; PORTD = 0x00; }
 elseif (A2D < 120) { PORTC = 0x00; PORTD = 0x01; }
 elseif (A2D < 180) { PORTC = 0x00; PORTD = 0x03; }
 elseif (A2D < 240) { PORTC = 0x00; PORTD = 0x07; }
 elseif (A2D < 300) { PORTC = 0x00; PORTD = 0x0F; }
 elseif (A2D < 360) { PORTC = 0x00; PORTD = 0x1F; }
 elseif (A2D < 420) { PORTC = 0x00; PORTD = 0x3F; }
 elseif (A2D < 480) { PORTC = 0x00; PORTD = 0x7F; }
 elseif (A2D < 540) { PORTC = 0x00; PORTD = 0xFF; }
 elseif (A2D < 600) { PORTC = 0x01; PORTD = 0xFF; }
 elseif (A2D < 660) { PORTC = 0x03; PORTD = 0xFF; }
 elseif (A2D < 720) { PORTC = 0x07; PORTD = 0xFF; }
 elseif (A2D < 780) { PORTC = 0x0F; PORTD = 0xFF; }
 elseif (A2D < 840) { PORTC = 0x1F; PORTD = 0xFF; }
 elseif (A2D < 900) { PORTC = 0x3F; PORTD = 0xFF; }
 elseif (A2D < 960) { PORTC = 0x7F; PORTD = 0xFF; }
 else { PORTC = 0xFF; PORTD = 0xFF; }

}

not stylish, but it works. You can do almost anything with if() statements.

5) Interrupts: Ohmmeters often times have a short-circuit test option. When you select this mode of

operation, a tone will play if the resistance you're measuring is less than 1 Ohm.

Assume a 100 Ohm resistor is used for a voltage divider so that an A/D reading of 10 or less corresponds

to R < 1 Ohm

Write a C program using Timer2 and Timer0 interrupts to

Sample the A/D reading every 3.00ms, and

Play 372Hz if the A/D reading is 10 or less

a) Interrupt Initialization

Timer0 Initialization
N = 13,440

Timer2 Initialization
A*B*C = 30,000 (3ms)

PS A B C

1 16 117 16

Timer0 Interrupt Routine

Play 372Hz if A/D reading is 10 or less

Timer2 Interrupt

Sample the A/D every 3.00ms

if(TMR0IF) {
 TMR0 = -13440;

 if(A2D < 11) RC0 = !RC0;

 TMR0IF = 0;
 }

// assumes A2D is a global variable

if(TMR2IF) {

 A2D = A2D_Read(0);

 TMR2IF = 0;
 }

6) Interrupts: Timer1 Compare. Write the interrupt service routines for a C program which measures how

long it takes you to press button connected to RC2 ten times using Timer1 Compare.

RB0 restarts the game (resets the counter on an INT0 interrupt)

RB7 goes 0V/5V

6a) Initialization for interrupts

INT0
rising or falling edge?

TIMER1
prescalar = ?

Timer1 Capture 1
rising / falling / 4th rising / 16th rising edge?

rising PS = 1 Rising

6b) Write the interrupt service routines

// Global variables
unsigend long int START, END, TIME, PERIOD;
unsigned int N;

// time of 10 presses stored in PERIOD

INT0
resets the counter (new game)

TIMER1 Timer1 Capture 1
counts presses

saves time of 10 presses in global variable
TIME10

if(INT0IF) {

 N = 0;

 START = TIME + TMR1;

 INT0IF = 0;

 }

if(TMR1IF) {

 TIME = TIME + 0x10000;

 TMR1IF = 0;
 }

if (CCPR1IF) {

 N += 1;

 if(N == 10) {

 END = TIME + CCPR1;

 PERIOD = END - START;

 }

 CCPR1IF = 0;
 }

note: It would be more accurate to use Timer1 Capture2 interrupts for a rising edge on RC1 to start the

game. That would record the start time to 100ns. As written, the START is off by about 50 clocks due to

using INT0 interrupts.

