ECE 376 - Final Exam: Name

Open-Book, Open Note, Calculators and Matlab permitted. Individual Effort.
1a) Binary Outputs:
1a) Give a circuit which allows a PIC to turn on and off a 32 mW LED

- $\mathrm{Id}=10 \mathrm{~mA}$
- $\mathrm{Vd}=3.2 \mathrm{~V}$

1b) Give a circuit which allows a PIC to turn on and off a 30W LED

- $\mathrm{Vd}=10.0 \mathrm{~V}$
- $\mathrm{Id}=3.0 \mathrm{~A}$

2) Analog Inputs: Determine the voltage, resistance, and temperature if a PIC reads 417 on the A / D input for the following circuit. Assume

- $\mathrm{R}=1100+100^{*}$ (your birth month) + (your birth date). For example, May 14th would give $\mathrm{R}=1514$ Ohms.
- Rt is a thermistor with the temperature - resistance relationship ($\mathrm{T}=$ temperature in degrees C)

$$
R_{t}=2000 \cdot \exp \left(\frac{4400}{T+273}-\frac{4400}{298}\right) \Omega
$$

R $1100+100^{*} \mathrm{mo}+$ day	raw A/D reading	Vx Volts	Rt Ohms	T Degrees C
	$\mathbf{4 1 7}$			

3) C-Coding: Lights Out is a game where

- You start the game by pressing RB0.
- At the start, four random lights are turned on (PORTC $=0 . .15$)
- Once started, you can toggle any light along with its neighbors by pressing buttons RB0/RB1/RB2/RB3 - For example, if you press RB1, lights RC1 is toggled along with its adjacent lights (toggle RC0/RC1/RC2).
- The goal is to turn all of the light off with the minimum number or button presses.

Write a C program which corresponds with the following flow chart for the game of Lights Out:

4) C Coding with Analog Inputs: Write a C subroutine which turns your PIC in to a bar-graph for voltage. When called,

- The subroutine reads the A/D input (0..1023)
- It then turns on LEDs on PORTC:PORTD to display the corresponding voltage as a bar graph:
- 0 V turns off all of the LEDs
- 1 V turns on $1 / 5$ th of the LEDs
- 2 V turns on $2 / 5$ ths of the LEDs
- etc.

For example, if 2.00 V was input on the A / R reading, the first 6 LEDs on PORTD would turn on.

5) Interrupts: Ohmmeters often times have a short-circuit test option. When you select this mode of operation, a tone will play if the resistance you're measuring is less than 1 Ohm .

Assume a 100 Ohm resistor is used for a voltage divider so that an A/D reading of 10 or less corresponds to $\mathrm{R}<1 \mathrm{Ohm}$

Write a C program using Timer2 and Timer0 interrupts to

- Sample the A / D reading every 3.00 ms , and
- Play 372 Hz if the A / D reading is 10 or less
a) Interrupt Initialization

Timer0 Initialization	Timer2 Initialization		
PS	A	B	C

Timer0 Interrupt Routine Play 372 Hz if A/D reading is 10 or less

Timer2 Interrupt Sample the A/D every 3.00 ms
6) Interrupts: Timer1 Compare. Write the interrupt service routines for a C program which measures how long it takes you to press button connected to RC2 ten times using Timer1 Compare.

- RB0 restarts the game (resets the counter on an INT0 interrupt)
- RB7 goes $0 \mathrm{~V} / 5 \mathrm{~V}$

6a) Initialization for interrupts

INT0 rising or falling edge?	TIMER1 prescalar $=?$	Timer1 Capture 1

6b) Write the interrupt service routines

INT0 resets the counter (new game)	TIMER1	Timer1 Capture 1 counts presses saves time of 10 presses in global variable TIME10
if(INTOIF) \{	if (TMR1IF) \{	if (CCPR1IF) \{

