ECE 376-Test \#2: Name

C-Programming on a PIC Processor

Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

1) C Coding \& Flow Charts. Write a C program for an random count-down timer.

- Let N be Your Birth Date (1..31).
- When you press RB0 (PORTB pin 0), a random number (0..255) is placed in PORTC
- The counter then counts down, one count every 1.5 seconds (i.e. problem \#4), until PORTC $<\mathrm{N}$
- It then repeats, waiting for you to press RB0

Test - Do Not Post

$\mathrm{N}=14$ (birth date 1..31)

```
#include <pic18.h>
void main(void) {
    ADCON1 = 0x0F;
        TRISB = 0xFF;
        TRISC = 0x00;
        TRISC = 0;
        while(1) {
        while(RBO == 0) {
            PORTC = PORTC + 1;
            }
        while(PORTC >= 14) {
            PORTC = PORTC - 1;
            Wait_ms(1500);
            }
        }
```

2) Battle Bots! Write a C program to control a battle bot.

- A stepper motor is connected to PORTC (left motor) and PORTD (right motor)
- The motor spins forward when PORTX goes through the sequence $\{1,2,4,8$, repeat $\}$
- The motor spins in reverse when PORTX goes through the sequence $\{8,4,2,1$, repeat $\}$

PORTB controls the motor ($10 \mathrm{~ms} /$ step when the motor is spinning)

Button	none	RB3 forward	RB2 turn left	RB1 turn right	RB0 reverse
Left Motor	stop	forward	reverse	forward	reverse
(PORTC)		$1-2-4-8$	$8-4-2-1$	$1-2-4-8$	$8-4-2-17$
Right Motor	stop	forward	forward	reverse	reverse
(PORTD)		$1-2-4-8$	$1-2-4-8$	$8-4-2-1$	$8-4-2-1$

Write the corresponding C code

LEFT $=0$;
RIGHT $=0$;
while(1) \{
if (RB3) \{ LEFT = LEFT + 1; RIGHT = RIGHT + 1; \}
if (RB2) $\{$ LEFT = LEFT - 1; RIGHT = RIGHT + 1; \}
if (RB1) \{ LEFT = LEFT + 1; RIGHT = RIGHT - 1; \}
if (RBO) \{ LEFT = LEFT - 1; RIGHT = RIGHT - 1; \}
PORTC = TABLE[LEFT \% 4];
PORTD = TABLE[RIGHT \% 4];
Wait_ms(10);
\}
\}

Analog Inputs

3) Assume the A / D input to a PIC processor has the following hardware connection where R_{T} is a 3 k thermistor where T is the temperature in degrees C

$$
R_{T}=3000 \cdot \exp \left(\frac{3200}{T+273}-\frac{3200}{298}\right) \Omega
$$

Let R be a resistor

$$
\mathrm{R}=1000+100^{*}(\text { your birth month })+(\text { your birth date }) .
$$

For example, May 14th would result in $\mathrm{R}=1514$ Ohms
If the A / D reading is 372 , determine
Test - Do Not Post

- The voltage at V1
- The temperature in degrees C , and
- How much the temperature would have to change for the PIC to detect that change

R $1000+100^{*} \mathrm{mo}+$ day	A/D Reading	V 1 volts	RT (Ohms)	Temperature degrees C
$\mathbf{1 5 1 4}$ Ohms	$\mathbf{3 7 2}$	$\mathbf{1 . 8 1 8 V}$	$\mathbf{8 6 5}$ Ohms	$\mathbf{6 4 . 0 3 C}$

$$
\begin{aligned}
& V_{1}=\left(\frac{372}{1023}\right) 5.00 \mathrm{~V}=1.818 \mathrm{~V} \\
& V_{1}=\left(\frac{R_{T}}{R_{T}+1514}\right) 5 \mathrm{~V} \\
& R_{T}=\left(\frac{1.818 \mathrm{~V}}{5_{V-1.818 V}}\right) 1514 \Omega=865.1 \Omega \\
& T=64.03^{\circ} \mathrm{C}
\end{aligned}
$$

chi-squared test

4) (10pt). A 5-sided die is rolled 33 times. The results are

1	2	3	4	5
8	9	7	6	13

Use a chi-squared test to determine the probability that this is a fair die (all numbers have equal probability)

					Do No					
					quared jecting th	able 11 hypoth				
dof	99.5\%	99\%	97.5\%	95\%	90\%	10\%	5\%	2.5\%	1\%	0.5\%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

roll	p	np	N	chi squared
1	$1 / 5$	6.6	8	0.3
2	$1 / 5$	6.6	9	0.87
3	$1 / 5$	6.6	7	0.02
4	$1 / 5$	6.6	6	0.05
5	$1 / 5$	6.6	13	6.21
				Total

From the Chi-squared table with 4 degrees of freedom, a chi-squared score of 7.45 corresponds to a probability of 90%

I am $\mathbf{9 0 \%}$ certain this is not a fair die

t-Tests

5) (15pt) Through week \#5, the opponents of the Minnesota Vikings have scored:

- $\{27,34,17,14,17\}$ points
- mean $=21.800$ points per game
- standard deviation $=8.408$ points per game
a) Use a t-test to determine how many points the Vikings have to score on offense to be 99% certain of winning the game?
b) Assume the Vikings score 34 points in game \#6. What is the chance they will win that game?

Test - Do Not Post Student t-Table area of tail										
dof $\backslash \mathrm{p}$	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29

a) 5 data points means 4 degrees of freedom
99% certain means a tail with 1% area
We're looking for a t-score of 3.75

$$
\begin{aligned}
& \text { points }=x+3.75 s \\
& \text { points }=21.80+3.75 \cdot 8.408 \\
& \text { points }=53.33 \text { points }
\end{aligned}
$$

This Vikings need to score 53.33 points to be $\mathbf{9 9 \%}$ certain of winning.
b) If the Vikings score 34 points,

The t-score is

$$
t=\left(\frac{34-21.8}{8.408}\right)=1.451
$$

This corresponds to a tail with an area of about 13%
If the Vikings score 34 points, there is a 13% chance they will lose If the Vikings score 34 points, there is an 87% chance they will win

