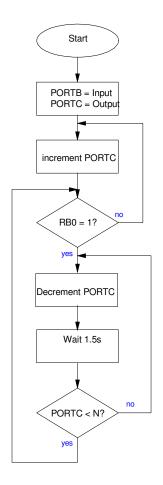
ECE 376 - Test #2: Name

C-Programming on a PIC Processor


Open book, open notes. Calculators and Matlab permitted. Individual effort (help from other people or web sites where other people help you solve the problems not permitted).

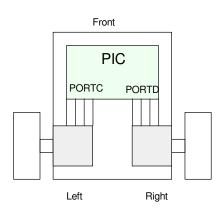
- 1) C Coding & Flow Charts. Write a C program for an random count-down timer.
 - Let N be Your Birth Date (1..31).
 - When you press RB0 (PORTB pin 0), a random number (0..255) is placed in PORTC
 - The counter then counts down, one count every 1.5 seconds (i.e. problem #4), until PORTC < N
 - It then repeats, waiting for you to press RB0

Test - Do Not Post

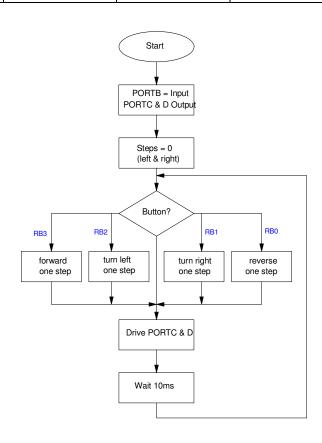
N = _____ (birth date 1..31)

```
#include <pic18.h>
void main(void) {
  ADCON1 = 0x0F;
```


2) Battle Bots! Write a C program to control a battle bot.


- A stepper motor is connected to PORTC (left motor) and PORTD (right motor)
- The motor spins forward when PORTX goes through the sequence {1, 2, 4, 8, repeat}
- The motor spins in reverse when PORTX goes through the sequence {8, 4, 2, 1, repeat}

PORTB controls the motor (10ms/step when the motor is spinning)


Button	none	RB3 forward	RB2 turn left	RB1 turn right	RB0 reverse
Left Motor	stop	forward	reverse	forward	reverse
(PORTC)		1-2-4-8	8-4-2-1	1-2-4-8	8-4-2-17
Right Motor	stop	forward	forward	reverse	reverse
(PORTD)		1-2-4-8	1-2-4-8	8-4-2-1	8-4-2-1

Write the corresponding C code

unsigned char TABLE[4] = {1, 2, 4, 8};
void main(void) }
ADCON1 = 0x0F;

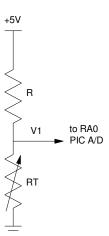
Analog Inputs

3) Assume the A/D input to a PIC processor has the following hardware connection where $R_{\rm T}$ is a 3k thermistor where T is the temperature in degrees C

$$R_T = 3000 \cdot \exp\left(\frac{3200}{T + 273} - \frac{3200}{298}\right) \Omega$$

Let R be a resistor

$$R = 1000 + 100*(your birth month) + (your birth date).$$


For example, May 14th would result in R = 1514 Ohms

If the A/D reading is 372, determine

Test - Do Not Post

- The voltage at V1
- The temperature in degrees C, and
- How much the temperature would have to change for the PIC to detect that change

R	A/D Reading	V1	Temperature
1000 + 100*mo + day		volts	degrees C
	372		

chi-squared test

4) (10pt). A 5-sided die is rolled 33 times. The results are

1	2	3	4	5
8	9	7	6	13

Use a chi-squared test to determine the probability that this is a fair die (all numbers have equal probability)

Test - Do Not Post

Chi-Squared Table

Probability of rejecting the null hypothesis

dof	99.5%	99%	97.5%	95%	90%	10%	5%	2.5%	1%	0.5%
1	7.88	6.64	5.02	3.84	2.71	0.02	0	0	0	0
2	10.6	9.21	7.38	5.99	4.61	0.21	0.1	0.05	0.02	0.01
3	12.84	11.35	9.35	7.82	6.25	0.58	0.35	0.22	0.12	0.07
4	14.86	13.28	11.14	9.49	7.78	1.06	0.71	0.48	0.3	0.21
5	16.75	15.09	12.83	11.07	9.24	1.61	1.15	0.83	0.55	0.41

t-Tests

- 5) (15pt) Through week #5, the opponents of the Minnesota Vikings have scored:
 - { 27, 34, 17, 14, 17 } points
 - mean = 21.800 points per game
 - standard deviation = 8.408 points per game
- a) Use a t-test to determine how many points the Vikings have to score on offense to be 99% certain of winning the game?
- b) Assume the Vikings score 34 points in game #6. What is the chance they will win that game?

Test - Do Not Post

	Student t-Table area of tail									
dof \ p	dof \ p 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0								0	
1	1	1.38	1.96	3.08	6.31	12.71	31.82	63.66	318.31	636.62
2	0.82	1.06	1.39	1.89	2.92	4.3	6.97	9.93	22.33	31.6
3	0.77	0.98	1.25	1.64	2.35	3.18	4.54	5.84	10.22	12.92
4	0.74	0.94	1.19	1.53	2.13	2.78	3.75	4.6	7.17	8.61
5	0.73	0.92	1.16	1.48	2.02	2.57	3.37	4.03	5.89	6.87
infinity	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.29