ECE 376 - Test #3: Name

Fall 2021. Open-Book, Open Note

1) Single Interrupt: Traffic Light, Write a program which uses Timer2 interrupts to control the timing of a traffic light. The red / yellow / green times are to be:

- Green: X seconds (RC0 = 1, RC1 = 0, RC2 = 0) (turn on the green light)
- Yellow = 1 sec (RC0 = 0, RC1 = 1, RC2 = 0) (turn on the yellow light)
- Red: 5 seconds (RC0 = 0, RC1 = 0, RC2 = 1) (turn on the red light)
- repeat

where

• X = 5 + 0.01*A2D seconds (5 to 15 seconds, depending upon traffic)

Timer2 Initialization:

N # clcoks between interrupts	А	В	С
10,000 (1ms)	10	250	4

Main Routine - main loop cycle from green to yellow to red & repeat Assume Timer2, A/D, etc are initialized	Timer2 Interrupt Routine
<pre>while(1) { X = 1000 + 10*A2D_Read(0); PORTC = 1; DELAY = X; while(DELAY); PORTC = 2; DELAY = 1000;</pre>	<pre>void Interrupt(void) { if(TMR2IF) { if(DELAY)DELAY -= 1; TMR2iF = 0; } </pre>
<pre>while(DELAY); PORTC = 4; DELAY = 5000; while(DELAY); }</pre>	

2) Multiple Interrupts: Telephones operate by generating dual tones when you press a button. Use interrupts to turn your PIC into a dual tone generator that works for numbers 1 (RB1) and 5 (RB5)

- When RB1 is pressed, RC0 plays 687Hz & RC1 plays 1209Hz for 200ms
- When RB5 is pressed, RC0 plays 770Hz & RC1 plays 1336Hz for 200ms

// Global Variables

unsigned int NO, N1; unsigned char PLAY;

// main loop and interrupts: (specify these sections of code)

Main Routine	Timer0	Timer1
monitor the buttons, controls the interrupts	plays a note on RC0	plays a note on RC1
<pre>while(1) { if(RB1) { N0 = 7278; N1 = 4135; PLAY = 1; Wait_ms(200); PLAY = 0; } if(RB5) { N0 = 6493; N1 = 3742; PLAY = 1; Wait_ms(200); PLAY = 0; } while(PORTB); } </pre>	<pre>if(TMR0IF) { TMR0 = -N0; if(PLAY) RC0 = !RC0; else RC0 = 0; TMR0IF = 0; } </pre>	<pre>if(TMR1IF) { TMR1 = -N1; if(PLAY) RC1 = !RC1; else RC1 = 0; TMR1IF = 0; } </pre>

3) Timer1 Capture: Write a program which uses Timer1 Capture interrupts to monitor a game show.

- As the start of the game, the host presses RB0. This clears the contestant's lights (RA2 = 0, RA1 = 0);
- The host then reads a question. If a contestant thinks they know the answer, they press their button.
 - RC2 = Player A (Capture 1)
 - RC1 = Player B (Capture 2)
- If contestant A presses their button and B does not, A wins (RA2 = 1, RA1 = 0)
- If contestant B presses their button and A does not, B wins (RA2 = 0, RA1 = 1)
 - If both contenstants press their buttons, whoever pressed their button first wins • Times recorded by Timer1 Capture interrupts, accurate to 100ns

Specify the global variables used, the main loop, and each interrupt

```
// Global variables
```

```
unsigned long int TIME, TA, TB;
```

```
// Interrupts
```

٠

Timer1	Capture1 rising edge on RC2 (player A)	Capture2 rising edge on RC1 (Player B)
<pre>if(TMR1IF) { TIME = TIME + 0x10000; TMR1IF = 0; }</pre>	<pre>if(CCP1IF) { TA = TIME + CCPR1; CCPR1IF = 0; }</pre>	<pre>if(CCP2IF) { TB = TIME + CCPR2; CCPR2IF = 0; }</pre>
<pre>while(1) { while(!RB0); PORTA = 0;</pre>		I
<pre>while((RA1 == 0) & (RA2 == if((RC2 == 1) & (RC1 == if((RC2 == 0) & (RC1 == if((RC2 == 1) & (RC1 == if(TA < TB) RA2 = 1; else RA1 = 1; } }</pre>	= 0)) RA2 = 1; = 1)) RA1 = 1; = 1)) {	

4) Filter Design: Design a digital filter, G(z), which has approximately the same gain vs. frequency as

$$G(s) = \left(\frac{20(s+5)}{s+20}\right)$$

Assume a sampling rate of T = 0.01 second.

Convert poles and zeros as

$$z = e^{sT}$$

 $s = -5$
 $z = e^{sT} = 0.9512$
 $s = -20$
 $z = e^{sT} = 0.8187$

so

$$G(z) = k \left(\frac{z - 0.9512}{z - 0.8187} \right)$$

Pick 'k' to match the DC gain

$$\left(\frac{20(s+5)}{s+20}\right)_{s=0} = 5$$
$$k\left(\frac{z-0.9512}{z-0.8187}\right)_{z=1} = 5$$
$$k = 3.5340$$

so

$$G(z) = 3.5340 \left(\frac{z - 0.9512}{z - 0.8187}\right)$$

5) Filter Coding: Write a C program to implement the following filter. Assume a sampling rate of T = 0.01 second.

```
Y = \left(\frac{0.01(z-0.9)}{(z-0.8)(z-0.7)}\right) X = \left(\frac{0.01z-0.009}{z^2-1.5z+0.56}\right) X
while (1) {
    x2 = x1;
    x1 = x0;
    x0 = A2D_Read(0);
    y2 = y1;
    y1 = y0;
    y0 = 1.5*y1 - 0.56*y2 + 0.01*x1 - 0.009*x2;
    D2A(y0);
    Wait_10ms();
    }
```