ECE 376 - Test \#3: Name

Fall 2021. Open-Book, Open Note

1) Single Interrupt: Traffic Light, Write a program which uses Timer2 interrupts to control the timing of a traffic light. The red / yellow / green times are to be:

- Green: X seconds $\quad(\mathrm{RC} 0=1, \mathrm{RC} 1=0, \mathrm{RC} 2=0)$ (turn on the green light)
- Yellow $=1 \mathrm{sec} \quad(\mathrm{RC} 0=0, \mathrm{RC} 1=1, \mathrm{RC} 2=0) \quad$ (turn on the yellow light)
- Red: 5 seconds $\quad(\mathrm{RC} 0=0, \mathrm{RC} 1=0, \mathrm{RC} 2=1)$ (turn on the red light)
- repeat
where
- $\mathrm{X}=5+0.01 * \mathrm{~A} 2 \mathrm{D}$ seconds (5 to 15 seconds, depending upon traffic)

Timer2 Initialization:

\# clcoks between interrupts	A	B	C

$\substack{\text { Main Routine - main loop } \\ \text { cycle from green to yellow to red \& repeat } \\ \text { Assume Timer2, A/D, etc are intialized }}$	Timer2 Interrupt Routine
while (1) $\{$	Void Interrupt (void) if (TMR2 IF) $\}$

2) Multiple Interrupts: Telephonoes operated by generating dual tones when you press a button. Use interrupts to turn your PIC into a dual tone generator that works for numbers 1 (RB1) and 5 (RB5)

- When RB1 is pressed, RC0 plays 687 Hz \& RC1 plays 1209 Hz for 200 ms
- When RB5 is pressed, RC0 plays 770 Hz \& RC1 plays 1336 Hz for 200 ms
// Global Variables

// main loop and interrupts:Main Routine monito the buttons, controls the interrupts	Timer0 plays a note on RC0	Timer1 plays a note on RC1
while(1) \{	if (TMROIF) \{	if (TMR1IF) \{

3) Timer1 Capture: Write a program which uses Timer1 Capture interrupts to monitor a game show.

- As the start of the game, the host presses RB0. This clears the contestant's lights (RA2 $=0$, RA1 $=0$);
- The host then reads a question. If a contestant thinks they know the answer, they press their button.
- $\mathrm{RC} 2=$ Player A (Capture 1)
- $\mathrm{RC} 1=$ Player B (Capture 2)
- If contestant A presses their button and B does not, A wins $(R A 2=1, R A 1=0)$
- If contestant B presses their button and A does not, B wins (RA2 $=0$, RA1 $=1$)
- If both contenstants press their buttons, whoever pressed their button first wins
- Times recorded by Timer1 Capture interrupts, accurate to 100 ns

Specify the global variables used, the main loop, and each interrupt
// Global variables
// Interrupts

Main Loop		Timer1	Capture1 rising edge on RC2 (player A)
while (1) \{	if (TMR1IF) \{	Capture2 rising edge on RC1 (Player B)	

4) Filter Design: Design a digital filter, $G(z)$, which has approximately the same gain vs. frequency as

$$
G(s)=\left(\frac{20(s+5)}{s+20}\right)
$$

Assume a sampling rate of $\mathrm{T}=0.01$ second.
5) Filter Coding: Write a C program to implement the following filter. Assume a sampling rate of $\mathrm{T}=$ 0.01 second.

$$
Y=\left(\frac{0.01(z-0.9)}{(z-0.8)(z-0.7)}\right) X=\left(\frac{0.01 z-0.009}{z^{2}-1.5 z+0.56}\right) X
$$

Bonus: Write the entire program and demonstrate problem 1, 2, or 3 (your pick).

